mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-24 15:18:46 +00:00
(doc/fluxion/linear) add/convert docstrings to mkdocstrings format
This commit is contained in:
parent
cf20621894
commit
12a8dd6c85
|
@ -1,5 +1,4 @@
|
||||||
from jaxtyping import Float
|
from torch import device as Device, dtype as DType
|
||||||
from torch import Tensor, device as Device, dtype as DType
|
|
||||||
from torch.nn import Linear as _Linear
|
from torch.nn import Linear as _Linear
|
||||||
|
|
||||||
from refiners.fluxion.layers.activations import ReLU
|
from refiners.fluxion.layers.activations import ReLU
|
||||||
|
@ -8,6 +7,27 @@ from refiners.fluxion.layers.module import Module, WeightedModule
|
||||||
|
|
||||||
|
|
||||||
class Linear(_Linear, WeightedModule):
|
class Linear(_Linear, WeightedModule):
|
||||||
|
"""Linear layer.
|
||||||
|
|
||||||
|
This layer wraps [`torch.nn.Linear`][torch.nn.Linear].
|
||||||
|
|
||||||
|
Receives:
|
||||||
|
Input (Float[Tensor, "batch in_features"]):
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Output (Float[Tensor, "batch out_features"]):
|
||||||
|
|
||||||
|
Example:
|
||||||
|
```py
|
||||||
|
linear = fl.Linear(in_features=32, out_features=128)
|
||||||
|
|
||||||
|
tensor = torch.randn(2, 32)
|
||||||
|
output = linear(tensor)
|
||||||
|
|
||||||
|
assert output.shape == (2, 128)
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
in_features: int,
|
in_features: int,
|
||||||
|
@ -16,6 +36,15 @@ class Linear(_Linear, WeightedModule):
|
||||||
device: Device | str | None = None,
|
device: Device | str | None = None,
|
||||||
dtype: DType | None = None,
|
dtype: DType | None = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
|
"""Initializes the Linear layer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
in_features: The number of input features.
|
||||||
|
out_features: The number of output features.
|
||||||
|
bias: If True, adds a learnable bias to the output.
|
||||||
|
device: The device to use for the linear layer.
|
||||||
|
dtype: The dtype to use for the linear layer.
|
||||||
|
"""
|
||||||
self.in_features = in_features
|
self.in_features = in_features
|
||||||
self.out_features = out_features
|
self.out_features = out_features
|
||||||
super().__init__( # type: ignore
|
super().__init__( # type: ignore
|
||||||
|
@ -26,11 +55,35 @@ class Linear(_Linear, WeightedModule):
|
||||||
dtype=dtype,
|
dtype=dtype,
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(self, x: Float[Tensor, "batch in_features"]) -> Float[Tensor, "batch out_features"]: # type: ignore
|
|
||||||
return super().forward(x)
|
|
||||||
|
|
||||||
|
|
||||||
class MultiLinear(Chain):
|
class MultiLinear(Chain):
|
||||||
|
"""Multi-layer linear network.
|
||||||
|
|
||||||
|
This layer wraps multiple [`torch.nn.Linear`][torch.nn.Linear] layers,
|
||||||
|
with an [`Activation`][refiners.fluxion.layers.Activation] layer in between.
|
||||||
|
|
||||||
|
Receives:
|
||||||
|
Input (Float[Tensor, "batch input_dim"]):
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Output (Float[Tensor, "batch output_dim"]):
|
||||||
|
|
||||||
|
Example:
|
||||||
|
```py
|
||||||
|
linear = fl.MultiLinear(
|
||||||
|
input_dim=32,
|
||||||
|
output_dim=128,
|
||||||
|
inner_dim=64,
|
||||||
|
num_layers=3,
|
||||||
|
)
|
||||||
|
|
||||||
|
tensor = torch.randn(2, 32)
|
||||||
|
output = linear(tensor)
|
||||||
|
|
||||||
|
assert output.shape == (2, 128)
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
input_dim: int,
|
input_dim: int,
|
||||||
|
@ -40,10 +93,36 @@ class MultiLinear(Chain):
|
||||||
device: Device | str | None = None,
|
device: Device | str | None = None,
|
||||||
dtype: DType | None = None,
|
dtype: DType | None = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
|
"""Initializes the MultiLinear layer.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input_dim: The input dimension of the first linear layer.
|
||||||
|
output_dim: The output dimension of the last linear layer.
|
||||||
|
inner_dim: The output dimension of the inner linear layers.
|
||||||
|
num_layers: The number of linear layers.
|
||||||
|
device: The device to use for the linear layers.
|
||||||
|
dtype: The dtype to use for the linear layers.
|
||||||
|
"""
|
||||||
layers: list[Module] = []
|
layers: list[Module] = []
|
||||||
for i in range(num_layers - 1):
|
for i in range(num_layers - 1):
|
||||||
layers.append(Linear(input_dim if i == 0 else inner_dim, inner_dim, device=device, dtype=dtype))
|
layers.append(
|
||||||
layers.append(ReLU())
|
Linear(
|
||||||
layers.append(Linear(inner_dim, output_dim, device=device, dtype=dtype))
|
in_features=input_dim if i == 0 else inner_dim,
|
||||||
|
out_features=inner_dim,
|
||||||
|
device=device,
|
||||||
|
dtype=dtype,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
layers.append(
|
||||||
|
ReLU(),
|
||||||
|
)
|
||||||
|
layers.append(
|
||||||
|
Linear(
|
||||||
|
in_features=inner_dim,
|
||||||
|
out_features=output_dim,
|
||||||
|
device=device,
|
||||||
|
dtype=dtype,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
super().__init__(layers)
|
super().__init__(layers)
|
||||||
|
|
Loading…
Reference in a new issue