mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-09 23:12:02 +00:00
remove stochastic Euler
It was untested and likely doesn't work. We will re-introduce it later if needed.
This commit is contained in:
parent
8a2b955bd0
commit
12aa0b23f6
|
@ -59,30 +59,6 @@ class Euler(Solver):
|
|||
predicted_noise: Tensor,
|
||||
step: int,
|
||||
generator: Generator | None = None,
|
||||
s_churn: float = 0.0,
|
||||
s_tmin: float = 0.0,
|
||||
s_tmax: float = float("inf"),
|
||||
s_noise: float = 1.0,
|
||||
) -> Tensor:
|
||||
assert self.first_inference_step <= step < self.num_inference_steps, "invalid step {step}"
|
||||
|
||||
sigma = self.sigmas[step]
|
||||
|
||||
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0
|
||||
|
||||
noise = torch.randn(
|
||||
predicted_noise.shape, generator=generator, device=predicted_noise.device, dtype=predicted_noise.dtype
|
||||
)
|
||||
eps = noise * s_noise
|
||||
sigma_hat = sigma * (gamma + 1)
|
||||
if gamma > 0:
|
||||
x = x + eps * (sigma_hat**2 - sigma**2) ** 0.5
|
||||
|
||||
predicted_x = x - sigma_hat * predicted_noise
|
||||
|
||||
# 1st order Euler
|
||||
derivative = (x - predicted_x) / sigma_hat
|
||||
dt = self.sigmas[step + 1] - sigma_hat
|
||||
denoised_x = x + derivative * dt
|
||||
|
||||
return denoised_x
|
||||
return x + predicted_noise * (self.sigmas[step + 1] - self.sigmas[step])
|
||||
|
|
Loading…
Reference in a new issue