mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-23 22:58:45 +00:00
update gaussian_blur
fluxion util, see 45e053b2ae
This commit is contained in:
parent
a51d695523
commit
2395e666d5
|
@ -70,9 +70,11 @@ def gaussian_blur(
|
||||||
) -> Float[Tensor, "*batch channels height width"]:
|
) -> Float[Tensor, "*batch channels height width"]:
|
||||||
assert torch.is_floating_point(tensor)
|
assert torch.is_floating_point(tensor)
|
||||||
|
|
||||||
def get_gaussian_kernel1d(kernel_size: int, sigma: float) -> Float[Tensor, "kernel_size"]:
|
def get_gaussian_kernel1d(
|
||||||
|
kernel_size: int, sigma: float, dtype: torch.dtype, device: torch.device
|
||||||
|
) -> Float[Tensor, "kernel_size"]:
|
||||||
ksize_half = (kernel_size - 1) * 0.5
|
ksize_half = (kernel_size - 1) * 0.5
|
||||||
x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
|
x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size, device=device, dtype=dtype)
|
||||||
pdf = torch.exp(-0.5 * (x / sigma).pow(2))
|
pdf = torch.exp(-0.5 * (x / sigma).pow(2))
|
||||||
kernel1d = pdf / pdf.sum()
|
kernel1d = pdf / pdf.sum()
|
||||||
return kernel1d
|
return kernel1d
|
||||||
|
@ -80,8 +82,8 @@ def gaussian_blur(
|
||||||
def get_gaussian_kernel2d(
|
def get_gaussian_kernel2d(
|
||||||
kernel_size_x: int, kernel_size_y: int, sigma_x: float, sigma_y: float, dtype: DType, device: Device
|
kernel_size_x: int, kernel_size_y: int, sigma_x: float, sigma_y: float, dtype: DType, device: Device
|
||||||
) -> Float[Tensor, "kernel_size_y kernel_size_x"]:
|
) -> Float[Tensor, "kernel_size_y kernel_size_x"]:
|
||||||
kernel1d_x = get_gaussian_kernel1d(kernel_size_x, sigma_x).to(device, dtype=dtype)
|
kernel1d_x = get_gaussian_kernel1d(kernel_size_x, sigma_x, dtype, device)
|
||||||
kernel1d_y = get_gaussian_kernel1d(kernel_size_y, sigma_y).to(device, dtype=dtype)
|
kernel1d_y = get_gaussian_kernel1d(kernel_size_y, sigma_y, dtype, device)
|
||||||
kernel2d = torch.mm(kernel1d_y[:, None], kernel1d_x[None, :])
|
kernel2d = torch.mm(kernel1d_y[:, None], kernel1d_x[None, :])
|
||||||
return kernel2d
|
return kernel2d
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue