add tests for LCM and LCM-LoRA

(As of now LoRA with guidance > 1 and especially base do not pass with those tolerances.)
This commit is contained in:
Pierre Chapuis 2024-02-16 13:53:21 +01:00
parent b55e9332fe
commit 383c3c8a04
5 changed files with 240 additions and 0 deletions

235
tests/e2e/test_lcm.py Normal file
View file

@ -0,0 +1,235 @@
import gc
from pathlib import Path
from warnings import warn
import pytest
import torch
from PIL import Image
from refiners.fluxion.utils import load_from_safetensors, manual_seed, no_grad
from refiners.foundationals.latent_diffusion.lcm_lora import add_lcm_lora
from refiners.foundationals.latent_diffusion.lora import SDLoraManager
from refiners.foundationals.latent_diffusion.solvers import LCMSolver
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.lcm import LcmAdapter
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.model import StableDiffusion_XL
from tests.utils import ensure_similar_images
@pytest.fixture(autouse=True)
def ensure_gc():
# Avoid GPU OOMs
# See https://github.com/pytest-dev/pytest/discussions/8153#discussioncomment-214812
gc.collect()
@pytest.fixture
def sdxl_lda_fp16_fix_weights(test_weights_path: Path) -> Path:
r = test_weights_path / "sdxl-lda-fp16-fix.safetensors"
if not r.is_file():
warn(f"could not find weights at {r}, skipping")
pytest.skip(allow_module_level=True)
return r
@pytest.fixture
def sdxl_unet_weights(test_weights_path: Path) -> Path:
r = test_weights_path / "sdxl-unet.safetensors"
if not r.is_file():
warn(f"could not find weights at {r}, skipping")
pytest.skip(allow_module_level=True)
return r
@pytest.fixture
def sdxl_lcm_unet_weights(test_weights_path: Path) -> Path:
r = test_weights_path / "sdxl-lcm-unet.safetensors"
if not r.is_file():
warn(f"could not find weights at {r}, skipping")
pytest.skip(allow_module_level=True)
return r
@pytest.fixture
def sdxl_text_encoder_weights(test_weights_path: Path) -> Path:
r = test_weights_path / "DoubleCLIPTextEncoder.safetensors"
if not r.is_file():
warn(f"could not find weights at {r}, skipping")
pytest.skip(allow_module_level=True)
return r
@pytest.fixture
def sdxl_lcm_lora_weights(test_weights_path: Path) -> Path:
r = test_weights_path / "sdxl-lcm-lora.safetensors"
if not r.is_file():
warn(f"could not find weights at {r}, skipping")
pytest.skip(allow_module_level=True)
return r
@pytest.fixture(scope="module")
def ref_path(test_e2e_path: Path) -> Path:
return test_e2e_path / "test_lcm_ref"
@pytest.fixture
def expected_lcm_base(ref_path: Path) -> Image.Image:
return Image.open(ref_path / "expected_lcm_base.png").convert("RGB")
@pytest.fixture
def expected_lcm_lora_1_0(ref_path: Path) -> Image.Image:
return Image.open(ref_path / "expected_lcm_lora_1_0.png").convert("RGB")
@pytest.fixture
def expected_lcm_lora_1_2(ref_path: Path) -> Image.Image:
return Image.open(ref_path / "expected_lcm_lora_1_2.png").convert("RGB")
@no_grad()
def test_lcm_base(
test_device: torch.device,
sdxl_lda_fp16_fix_weights: Path,
sdxl_lcm_unet_weights: Path,
sdxl_text_encoder_weights: Path,
expected_lcm_base: Image.Image,
) -> None:
if test_device.type == "cpu":
warn(message="not running on CPU, skipping")
pytest.skip()
solver = LCMSolver(num_inference_steps=4)
sdxl = StableDiffusion_XL(device=test_device, dtype=torch.float16, solver=solver)
sdxl.classifier_free_guidance = False
# With standard LCM the condition scale is passed to the adapter,
# not in the diffusion loop.
LcmAdapter(sdxl.unet, condition_scale=8.0).inject()
sdxl.clip_text_encoder.load_from_safetensors(sdxl_text_encoder_weights)
sdxl.lda.load_from_safetensors(sdxl_lda_fp16_fix_weights)
sdxl.unet.load_from_safetensors(sdxl_lcm_unet_weights)
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
expected_image = expected_lcm_base
# *NOT* compute_clip_text_embedding! We disable classifier-free guidance.
clip_text_embedding, pooled_text_embedding = sdxl.clip_text_encoder(prompt)
time_ids = sdxl.default_time_ids
manual_seed(2)
x = sdxl.init_latents((1024, 1024)).to(sdxl.device, sdxl.dtype)
for step in sdxl.steps:
x = sdxl(
x,
step=step,
clip_text_embedding=clip_text_embedding,
pooled_text_embedding=pooled_text_embedding,
time_ids=time_ids,
)
predicted_image = sdxl.lda.latents_to_image(x)
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)
@no_grad()
@pytest.mark.parametrize("condition_scale", [1.0, 1.2])
def test_lcm_lora_with_guidance(
test_device: torch.device,
sdxl_lda_fp16_fix_weights: Path,
sdxl_unet_weights: Path,
sdxl_text_encoder_weights: Path,
sdxl_lcm_lora_weights: Path,
expected_lcm_lora_1_0: Image.Image,
expected_lcm_lora_1_2: Image.Image,
condition_scale: float,
) -> None:
if test_device.type == "cpu":
warn(message="not running on CPU, skipping")
pytest.skip()
solver = LCMSolver(num_inference_steps=4)
sdxl = StableDiffusion_XL(device=test_device, dtype=torch.float16, solver=solver)
sdxl.clip_text_encoder.load_from_safetensors(sdxl_text_encoder_weights)
sdxl.lda.load_from_safetensors(sdxl_lda_fp16_fix_weights)
sdxl.unet.load_from_safetensors(sdxl_unet_weights)
manager = SDLoraManager(sdxl)
add_lcm_lora(manager, "lcm", load_from_safetensors(sdxl_lcm_lora_weights))
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
expected_image = expected_lcm_lora_1_0 if condition_scale == 1.0 else expected_lcm_lora_1_2
# *NOT* clip_text_encoder! We use classifier-free guidance here.
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(prompt)
time_ids = sdxl.default_time_ids
assert time_ids.shape == (2, 6) # CFG
manual_seed(2)
x = sdxl.init_latents((1024, 1024)).to(sdxl.device, sdxl.dtype)
for step in sdxl.steps:
x = sdxl(
x,
step=step,
clip_text_embedding=clip_text_embedding,
pooled_text_embedding=pooled_text_embedding,
time_ids=time_ids,
condition_scale=condition_scale,
)
predicted_image = sdxl.lda.latents_to_image(x)
psnr = 35 if condition_scale == 1.0 else 33
ensure_similar_images(predicted_image, expected_image, min_psnr=psnr, min_ssim=0.98)
@no_grad()
def test_lcm_lora_without_guidance(
test_device: torch.device,
sdxl_lda_fp16_fix_weights: Path,
sdxl_unet_weights: Path,
sdxl_text_encoder_weights: Path,
sdxl_lcm_lora_weights: Path,
expected_lcm_lora_1_0: Image.Image,
) -> None:
if test_device.type == "cpu":
warn(message="not running on CPU, skipping")
pytest.skip()
solver = LCMSolver(num_inference_steps=4)
sdxl = StableDiffusion_XL(device=test_device, dtype=torch.float16, solver=solver)
sdxl.classifier_free_guidance = False
sdxl.clip_text_encoder.load_from_safetensors(sdxl_text_encoder_weights)
sdxl.lda.load_from_safetensors(sdxl_lda_fp16_fix_weights)
sdxl.unet.load_from_safetensors(sdxl_unet_weights)
manager = SDLoraManager(sdxl)
add_lcm_lora(manager, "lcm", load_from_safetensors(sdxl_lcm_lora_weights))
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
expected_image = expected_lcm_lora_1_0
# *NOT* compute_clip_text_embedding! We disable classifier-free guidance.
clip_text_embedding, pooled_text_embedding = sdxl.clip_text_encoder(prompt)
time_ids = sdxl.default_time_ids
assert time_ids.shape == (1, 6) # no CFG
manual_seed(2)
x = sdxl.init_latents((1024, 1024)).to(sdxl.device, sdxl.dtype)
for step in sdxl.steps:
x = sdxl(
x,
step=step,
clip_text_embedding=clip_text_embedding,
pooled_text_embedding=pooled_text_embedding,
time_ids=time_ids,
condition_scale=0.0,
)
predicted_image = sdxl.lda.latents_to_image(x)
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)

View file

@ -0,0 +1,5 @@
# Note about this data
## Expected outputs
`expected_*.png` files in this folder are all the output of the same diffusion run with Diffusers (see [here](https://huggingface.co/docs/diffusers/main/en/using-diffusers/lcm) and [here](https://huggingface.co/docs/diffusers/main/en/using-diffusers/inference_with_lcm_lora), but note that the generator must be properly seeded).

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.6 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.6 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.6 MiB