mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-21 21:58:47 +00:00
(doc/foundationals) add DINOv2
, related docstrings
This commit is contained in:
parent
fc7b4dd62d
commit
3910845e29
|
@ -7,11 +7,30 @@ from refiners.foundationals.dinov2.vit import ViT
|
|||
|
||||
|
||||
class DINOv2_small(ViT):
|
||||
"""DINOv2 small model.
|
||||
|
||||
See [[arXiv:2304.07193] DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)
|
||||
for more details.
|
||||
|
||||
Attributes:
|
||||
embedding_dim (int): 384
|
||||
patch_size (int): 14
|
||||
image_size (int): 518
|
||||
num_layers (int): 12
|
||||
num_heads (int): 6
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
device: torch.device | str | None = None,
|
||||
dtype: torch.dtype | None = None,
|
||||
) -> None:
|
||||
"""Initialize DINOv2 small model.
|
||||
|
||||
Args:
|
||||
device: The PyTorch device to use.
|
||||
dtype: The PyTorch data type to use.
|
||||
"""
|
||||
super().__init__(
|
||||
embedding_dim=384,
|
||||
patch_size=14,
|
||||
|
@ -24,11 +43,30 @@ class DINOv2_small(ViT):
|
|||
|
||||
|
||||
class DINOv2_base(ViT):
|
||||
"""DINOv2 base model.
|
||||
|
||||
See [[arXiv:2304.07193] DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)
|
||||
for more details.
|
||||
|
||||
Attributes:
|
||||
embedding_dim (int): 768
|
||||
patch_size (int): 14
|
||||
image_size (int): 518
|
||||
num_layers (int): 12
|
||||
num_heads (int): 12
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
device: torch.device | str | None = None,
|
||||
dtype: torch.dtype | None = None,
|
||||
) -> None:
|
||||
"""Initialize DINOv2 base model.
|
||||
|
||||
Args:
|
||||
device: The PyTorch device to use.
|
||||
dtype: The PyTorch data type to use.
|
||||
"""
|
||||
super().__init__(
|
||||
embedding_dim=768,
|
||||
patch_size=14,
|
||||
|
@ -41,11 +79,30 @@ class DINOv2_base(ViT):
|
|||
|
||||
|
||||
class DINOv2_large(ViT):
|
||||
"""DINOv2 large model.
|
||||
|
||||
See [[arXiv:2304.07193] DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)
|
||||
for more details.
|
||||
|
||||
Attributes:
|
||||
embedding_dim (int): 1024
|
||||
patch_size (int): 14
|
||||
image_size (int): 518
|
||||
num_layers (int): 24
|
||||
num_heads (int): 16
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
device: torch.device | str | None = None,
|
||||
dtype: torch.dtype | None = None,
|
||||
) -> None:
|
||||
"""Initialize DINOv2 large model.
|
||||
|
||||
Args:
|
||||
device: The PyTorch device to use.
|
||||
dtype: The PyTorch data type to use.
|
||||
"""
|
||||
super().__init__(
|
||||
embedding_dim=1024,
|
||||
patch_size=14,
|
||||
|
@ -76,11 +133,32 @@ class DINOv2_large(ViT):
|
|||
|
||||
|
||||
class DINOv2_small_reg(ViT):
|
||||
"""DINOv2 small model with register.
|
||||
|
||||
See [[arXiv:2304.07193] DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)
|
||||
and [[arXiv:2309.16588] Vision Transformers Need Registers](https://arxiv.org/abs/2309.16588)
|
||||
for more details.
|
||||
|
||||
Attributes:
|
||||
embedding_dim (int): 384
|
||||
patch_size (int): 14
|
||||
image_size (int): 518
|
||||
num_layers (int): 12
|
||||
num_heads (int): 6
|
||||
num_registers (int): 4
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
device: torch.device | str | None = None,
|
||||
dtype: torch.dtype | None = None,
|
||||
) -> None:
|
||||
"""Initialize DINOv2 small model with register.
|
||||
|
||||
Args:
|
||||
device (torch.device | str | None): The PyTorch device to use.
|
||||
dtype (torch.dtype | None): The PyTorch data type to use.
|
||||
"""
|
||||
super().__init__(
|
||||
embedding_dim=384,
|
||||
patch_size=14,
|
||||
|
@ -94,11 +172,32 @@ class DINOv2_small_reg(ViT):
|
|||
|
||||
|
||||
class DINOv2_base_reg(ViT):
|
||||
"""DINOv2 base model with register.
|
||||
|
||||
See [[arXiv:2304.07193] DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)
|
||||
and [[arXiv:2309.16588] Vision Transformers Need Registers](https://arxiv.org/abs/2309.16588)
|
||||
for more details.
|
||||
|
||||
Attributes:
|
||||
embedding_dim (int): 768
|
||||
patch_size (int): 14
|
||||
image_size (int): 518
|
||||
num_layers (int): 12
|
||||
num_heads (int): 12
|
||||
num_registers (int): 4
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
device: torch.device | str | None = None,
|
||||
dtype: torch.dtype | None = None,
|
||||
) -> None:
|
||||
"""Initialize DINOv2 base model with register.
|
||||
|
||||
Args:
|
||||
device (torch.device | str | None): The PyTorch device to use.
|
||||
dtype (torch.dtype | None): The PyTorch data type to use.
|
||||
"""
|
||||
super().__init__(
|
||||
embedding_dim=768,
|
||||
patch_size=14,
|
||||
|
@ -112,11 +211,32 @@ class DINOv2_base_reg(ViT):
|
|||
|
||||
|
||||
class DINOv2_large_reg(ViT):
|
||||
"""DINOv2 large model with register.
|
||||
|
||||
See [[arXiv:2304.07193] DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)
|
||||
and [[arXiv:2309.16588] Vision Transformers Need Registers](https://arxiv.org/abs/2309.16588)
|
||||
for more details.
|
||||
|
||||
Attributes:
|
||||
embedding_dim (int): 1024
|
||||
patch_size (int): 14
|
||||
image_size (int): 518
|
||||
num_layers (int): 24
|
||||
num_heads (int): 16
|
||||
num_registers (int): 4
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
device: torch.device | str | None = None,
|
||||
dtype: torch.dtype | None = None,
|
||||
) -> None:
|
||||
"""Initialize DINOv2 large model with register.
|
||||
|
||||
Args:
|
||||
device (torch.device | str | None): The PyTorch device to use.
|
||||
dtype (torch.dtype | None): The PyTorch data type to use.
|
||||
"""
|
||||
super().__init__(
|
||||
embedding_dim=1024,
|
||||
patch_size=14,
|
||||
|
|
|
@ -227,9 +227,10 @@ class Registers(fl.Concatenate):
|
|||
|
||||
|
||||
class ViT(fl.Chain):
|
||||
"""Vision Transformer (ViT).
|
||||
"""Vision Transformer (ViT) model.
|
||||
|
||||
see https://arxiv.org/abs/2010.11929v2
|
||||
See [[arXiv:2010.11929] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929)
|
||||
for more details.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
|
@ -245,6 +246,20 @@ class ViT(fl.Chain):
|
|||
device: torch.device | str | None = None,
|
||||
dtype: torch.dtype | None = None,
|
||||
) -> None:
|
||||
"""Initialize a Vision Transformer (ViT) model.
|
||||
|
||||
Args:
|
||||
embedding_dim: The dimension of the embedding.
|
||||
patch_size: The size of the patches.
|
||||
image_size: The size of the input image.
|
||||
num_layers: The number of layers.
|
||||
num_heads: The number of heads.
|
||||
norm_eps: The epsilon value for normalization.
|
||||
mlp_ratio: The ratio for the multi-layer perceptron (MLP).
|
||||
num_registers: The number of registers.
|
||||
device: The PyTorch device to use.
|
||||
dtype: The PyTorch data type to use.
|
||||
"""
|
||||
num_patches = image_size // patch_size
|
||||
self.embedding_dim = embedding_dim
|
||||
self.patch_size = patch_size
|
||||
|
|
Loading…
Reference in a new issue