add test_diffusion_std_random_init_bfloat16 e2e test

This commit is contained in:
Laurent 2024-10-03 08:45:30 +00:00 committed by Laureηt
parent 12622ad114
commit 4360aa046f
2 changed files with 53 additions and 0 deletions

View file

@ -92,6 +92,11 @@ def expected_image_std_random_init(ref_path: Path) -> Image.Image:
return _img_open(ref_path / "expected_std_random_init.png").convert("RGB")
@pytest.fixture
def expected_image_std_random_init_bfloat16(ref_path: Path) -> Image.Image:
return _img_open(ref_path / "expected_std_random_init_bfloat16.png").convert("RGB")
@pytest.fixture
def expected_image_std_sde_random_init(ref_path: Path) -> Image.Image:
return _img_open(ref_path / "expected_std_sde_random_init.png").convert("RGB")
@ -637,6 +642,26 @@ def sd15_std_float16(
return sd15
@pytest.fixture
def sd15_std_bfloat16(
text_encoder_weights: Path,
lda_weights: Path,
unet_weights_std: Path,
test_device: torch.device,
) -> StableDiffusion_1:
if test_device.type == "cpu":
warn("not running on CPU, skipping")
pytest.skip()
sd15 = StableDiffusion_1(device=test_device, dtype=torch.bfloat16)
sd15.clip_text_encoder.load_from_safetensors(text_encoder_weights)
sd15.lda.load_from_safetensors(lda_weights)
sd15.unet.load_from_safetensors(unet_weights_std)
return sd15
@pytest.fixture
def sd15_inpainting(
text_encoder_weights: Path, lda_weights: Path, unet_weights_inpainting: Path, test_device: torch.device
@ -891,6 +916,34 @@ def test_diffusion_std_random_init(
ensure_similar_images(predicted_image, expected_image_std_random_init)
@no_grad()
def test_diffusion_std_random_init_bfloat16(
sd15_std_bfloat16: StableDiffusion_1,
expected_image_std_random_init_bfloat16: Image.Image,
):
sd15 = sd15_std_bfloat16
prompt = "a cute cat, detailed high-quality professional image"
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
sd15.set_inference_steps(30)
manual_seed(2)
x = torch.randn(1, 4, 64, 64, device=sd15.device, dtype=sd15.dtype)
for step in sd15.steps:
x = sd15(
x,
step=step,
clip_text_embedding=clip_text_embedding,
condition_scale=7.5,
)
predicted_image = sd15.lda.latents_to_image(x)
ensure_similar_images(predicted_image, expected_image_std_random_init_bfloat16)
@no_grad()
def test_diffusion_std_sde_random_init(
sd15_std_sde: StableDiffusion_1, expected_image_std_sde_random_init: Image.Image, test_device: torch.device

Binary file not shown.

After

Width:  |  Height:  |  Size: 490 KiB