mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-21 13:48:46 +00:00
add unit tests covering fluxion's gaussian_blur
This commit is contained in:
parent
0dfa23fa53
commit
665bcdc95c
1205
poetry.lock
generated
1205
poetry.lock
generated
File diff suppressed because it is too large
Load diff
|
@ -34,7 +34,7 @@ segment-anything = {git = "https://github.com/facebookresearch/segment-anything"
|
|||
[tool.poetry.extras]
|
||||
training = ["datasets", "tomli", "wandb", "loguru", "bitsandbytes", "prodigyopt", "pydantic", "scipy", "torchvision"]
|
||||
conversion = ["diffusers", "transformers", "segment-anything"]
|
||||
test = ["diffusers", "transformers", "piq", "invisible-watermark", "segment-anything"]
|
||||
test = ["diffusers", "transformers", "piq", "invisible-watermark", "segment-anything", "torchvision"]
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
black = "^23.1.0"
|
||||
|
|
42
tests/fluxion/test_utils.py
Normal file
42
tests/fluxion/test_utils.py
Normal file
|
@ -0,0 +1,42 @@
|
|||
from dataclasses import dataclass
|
||||
|
||||
from torchvision.transforms.functional import gaussian_blur as torch_gaussian_blur # type: ignore
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from refiners.fluxion.utils import gaussian_blur, manual_seed
|
||||
|
||||
|
||||
@dataclass
|
||||
class BlurInput:
|
||||
kernel_size: int | tuple[int, int]
|
||||
sigma: float | tuple[float, float] | None = None
|
||||
image_height: int = 512
|
||||
image_width: int = 512
|
||||
batch_size: int | None = 1
|
||||
|
||||
|
||||
BLUR_INPUTS: list[BlurInput] = [
|
||||
BlurInput(kernel_size=9),
|
||||
BlurInput(kernel_size=9, batch_size=None),
|
||||
BlurInput(kernel_size=9, sigma=1.0),
|
||||
BlurInput(kernel_size=9, sigma=1.0, image_height=768),
|
||||
BlurInput(kernel_size=(9, 5), sigma=(1.0, 0.8)),
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture(params=BLUR_INPUTS)
|
||||
def blur_input(request: pytest.FixtureRequest) -> BlurInput:
|
||||
return request.param
|
||||
|
||||
|
||||
def test_gaussian_blur(blur_input: BlurInput) -> None:
|
||||
manual_seed(2)
|
||||
tensor = torch.randn(3, blur_input.image_height, blur_input.image_width)
|
||||
if blur_input.batch_size is not None:
|
||||
tensor = tensor.expand(blur_input.batch_size, -1, -1, -1)
|
||||
|
||||
ref_blur = torch_gaussian_blur(tensor, blur_input.kernel_size, blur_input.sigma) # type: ignore
|
||||
our_blur = gaussian_blur(tensor, blur_input.kernel_size, blur_input.sigma)
|
||||
|
||||
assert torch.equal(our_blur, ref_blur)
|
Loading…
Reference in a new issue