initialize StableDiffusion_1_Inpainting with a 9 channel SD1Unet if not provided

This commit is contained in:
Laurent 2024-04-23 14:43:32 +00:00 committed by Laureηt
parent f32ccc3474
commit 7aff743019
2 changed files with 24 additions and 1 deletions

View file

@ -198,8 +198,14 @@ class StableDiffusion_1_Inpainting(StableDiffusion_1):
) -> None:
self.mask_latents: Tensor | None = None
self.target_image_latents: Tensor | None = None
unet = unet or SD1UNet(in_channels=9)
super().__init__(
unet=unet, lda=lda, clip_text_encoder=clip_text_encoder, solver=solver, device=device, dtype=dtype
unet=unet,
lda=lda,
clip_text_encoder=clip_text_encoder,
solver=solver,
device=device,
dtype=dtype,
)
def forward(

View file

@ -1,6 +1,8 @@
import torch
from PIL import Image
from refiners.fluxion.utils import manual_seed, no_grad
from refiners.foundationals.latent_diffusion import StableDiffusion_1_Inpainting
from refiners.foundationals.latent_diffusion.model import LatentDiffusionModel
@ -12,3 +14,18 @@ def test_sample_noise():
latents_1 = LatentDiffusionModel.sample_noise(size=(1, 4, 64, 64), offset_noise=0.0)
assert torch.allclose(latents_0, latents_1, atol=1e-6, rtol=0)
@no_grad()
def test_sd1_inpainting(test_device: torch.device) -> None:
sd = StableDiffusion_1_Inpainting(device=test_device)
latent_noise = torch.randn(1, 4, 64, 64, device=test_device)
target_image = Image.new("RGB", (512, 512))
mask = Image.new("L", (512, 512))
sd.set_inpainting_conditions(target_image=target_image, mask=mask)
text_embedding = sd.compute_clip_text_embedding("")
output = sd(latent_noise, step=0, clip_text_embedding=text_embedding)
assert output.shape == (1, 4, 64, 64)