mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-24 23:28:45 +00:00
add e2e test for sd15 with karras noise schedule
This commit is contained in:
parent
6f110ee2b2
commit
90db6ef59d
|
@ -25,6 +25,7 @@ from refiners.foundationals.latent_diffusion.restart import Restart
|
|||
from refiners.foundationals.latent_diffusion.schedulers import DDIM
|
||||
from refiners.foundationals.latent_diffusion.reference_only_control import ReferenceOnlyControlAdapter
|
||||
from refiners.foundationals.clip.concepts import ConceptExtender
|
||||
from refiners.foundationals.latent_diffusion.schedulers.scheduler import NoiseSchedule
|
||||
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_diffusion import SD1MultiDiffusion
|
||||
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.model import StableDiffusion_XL
|
||||
|
||||
|
@ -66,6 +67,11 @@ def expected_image_std_random_init(ref_path: Path) -> Image.Image:
|
|||
return Image.open(ref_path / "expected_std_random_init.png").convert("RGB")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def expected_karras_random_init(ref_path: Path) -> Image.Image:
|
||||
return Image.open(ref_path / "expected_karras_random_init.png").convert("RGB")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def expected_image_std_random_init_sag(ref_path: Path) -> Image.Image:
|
||||
return Image.open(ref_path / "expected_std_random_init_sag.png").convert("RGB")
|
||||
|
@ -416,6 +422,24 @@ def sd15_ddim(
|
|||
return sd15
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sd15_ddim_karras(
|
||||
text_encoder_weights: Path, lda_weights: Path, unet_weights_std: Path, test_device: torch.device
|
||||
) -> StableDiffusion_1:
|
||||
if test_device.type == "cpu":
|
||||
warn("not running on CPU, skipping")
|
||||
pytest.skip()
|
||||
|
||||
ddim_scheduler = DDIM(num_inference_steps=20, noise_schedule=NoiseSchedule.KARRAS)
|
||||
sd15 = StableDiffusion_1(scheduler=ddim_scheduler, device=test_device)
|
||||
|
||||
sd15.clip_text_encoder.load_from_safetensors(text_encoder_weights)
|
||||
sd15.lda.load_from_safetensors(lda_weights)
|
||||
sd15.unet.load_from_safetensors(unet_weights_std)
|
||||
|
||||
return sd15
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sd15_ddim_lda_ft_mse(
|
||||
text_encoder_weights: Path, lda_ft_mse_weights: Path, unet_weights_std: Path, test_device: torch.device
|
||||
|
@ -507,6 +531,31 @@ def test_diffusion_std_random_init(
|
|||
ensure_similar_images(predicted_image, expected_image_std_random_init)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def test_diffusion_karras_random_init(
|
||||
sd15_ddim_karras: StableDiffusion_1, expected_karras_random_init: Image.Image, test_device: torch.device
|
||||
):
|
||||
sd15 = sd15_ddim_karras
|
||||
|
||||
prompt = "a cute cat, detailed high-quality professional image"
|
||||
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
||||
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
||||
|
||||
manual_seed(2)
|
||||
x = torch.randn(1, 4, 64, 64, device=test_device)
|
||||
|
||||
for step in sd15.steps:
|
||||
x = sd15(
|
||||
x,
|
||||
step=step,
|
||||
clip_text_embedding=clip_text_embedding,
|
||||
condition_scale=7.5,
|
||||
)
|
||||
predicted_image = sd15.lda.decode_latents(x)
|
||||
|
||||
ensure_similar_images(predicted_image, expected_karras_random_init, min_psnr=35, min_ssim=0.98)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def test_diffusion_std_random_init_float16(
|
||||
sd15_std_float16: StableDiffusion_1, expected_image_std_random_init: Image.Image, test_device: torch.device
|
||||
|
|
BIN
tests/e2e/test_diffusion_ref/expected_karras_random_init.png
Normal file
BIN
tests/e2e/test_diffusion_ref/expected_karras_random_init.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 512 KiB |
Loading…
Reference in a new issue