mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-21 13:48:46 +00:00
rename test_unet.py to test_sd15_unet.py + use test_device fixture
This commit is contained in:
parent
3196a26ed6
commit
95beb5c767
31
tests/foundationals/latent_diffusion/test_sd15_unet.py
Normal file
31
tests/foundationals/latent_diffusion/test_sd15_unet.py
Normal file
|
@ -0,0 +1,31 @@
|
||||||
|
import pytest
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from refiners.fluxion import manual_seed
|
||||||
|
from refiners.fluxion.utils import no_grad
|
||||||
|
from refiners.foundationals.latent_diffusion import SD1UNet
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture(scope="module")
|
||||||
|
def refiners_sd15_unet(test_device: torch.device) -> SD1UNet:
|
||||||
|
unet = SD1UNet(in_channels=4, device=test_device)
|
||||||
|
return unet
|
||||||
|
|
||||||
|
|
||||||
|
def test_unet_context_flush(refiners_sd15_unet: SD1UNet):
|
||||||
|
manual_seed(0)
|
||||||
|
text_embedding = torch.randn(1, 77, 768, device=refiners_sd15_unet.device, dtype=refiners_sd15_unet.dtype)
|
||||||
|
timestep = torch.randint(0, 999, size=(1, 1), device=refiners_sd15_unet.device)
|
||||||
|
x = torch.randn(1, 4, 32, 32, device=refiners_sd15_unet.device, dtype=refiners_sd15_unet.dtype)
|
||||||
|
|
||||||
|
refiners_sd15_unet.set_clip_text_embedding(clip_text_embedding=text_embedding) # not flushed between forward-s
|
||||||
|
|
||||||
|
with no_grad():
|
||||||
|
refiners_sd15_unet.set_timestep(timestep=timestep)
|
||||||
|
y_1 = refiners_sd15_unet(x.clone())
|
||||||
|
|
||||||
|
with no_grad():
|
||||||
|
refiners_sd15_unet.set_timestep(timestep=timestep)
|
||||||
|
y_2 = refiners_sd15_unet(x.clone())
|
||||||
|
|
||||||
|
assert torch.equal(y_1, y_2)
|
|
@ -1,25 +0,0 @@
|
||||||
import torch
|
|
||||||
|
|
||||||
from refiners.fluxion import manual_seed
|
|
||||||
from refiners.fluxion.utils import no_grad
|
|
||||||
from refiners.foundationals.latent_diffusion import SD1UNet
|
|
||||||
|
|
||||||
|
|
||||||
def test_unet_context_flush():
|
|
||||||
manual_seed(0)
|
|
||||||
text_embedding = torch.randn(1, 77, 768)
|
|
||||||
timestep = torch.randint(0, 999, size=(1, 1))
|
|
||||||
x = torch.randn(1, 4, 32, 32)
|
|
||||||
|
|
||||||
unet = SD1UNet(in_channels=4)
|
|
||||||
unet.set_clip_text_embedding(clip_text_embedding=text_embedding) # not flushed between forward-s
|
|
||||||
|
|
||||||
with no_grad():
|
|
||||||
unet.set_timestep(timestep=timestep)
|
|
||||||
y_1 = unet(x.clone())
|
|
||||||
|
|
||||||
with no_grad():
|
|
||||||
unet.set_timestep(timestep=timestep)
|
|
||||||
y_2 = unet(x.clone())
|
|
||||||
|
|
||||||
assert torch.equal(y_1, y_2)
|
|
Loading…
Reference in a new issue