mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-21 21:58:47 +00:00
parent
7aff743019
commit
b7bb8bba80
|
@ -1,16 +1,6 @@
|
|||
from typing import TYPE_CHECKING, Any, Generic, TypeVar, cast
|
||||
from typing import TYPE_CHECKING, Any, Generic, TypeVar
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, field_validator
|
||||
|
||||
from refiners.training_utils.common import (
|
||||
Epoch,
|
||||
Iteration,
|
||||
Step,
|
||||
TimeValue,
|
||||
TimeValueInput,
|
||||
parse_number_unit_field,
|
||||
scoped_seed,
|
||||
)
|
||||
from pydantic import BaseModel, ConfigDict
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from refiners.training_utils.trainer import Trainer
|
||||
|
@ -18,65 +8,6 @@ if TYPE_CHECKING:
|
|||
T = TypeVar("T", bound="Trainer[Any, Any]")
|
||||
|
||||
|
||||
class StepEventConfig(BaseModel):
|
||||
"""
|
||||
Base configuration for an event that is triggered at every step.
|
||||
|
||||
- `seed`: Seed to use for the event. If `None`, the seed will not be set. The random state will be saved and
|
||||
restored after the event.
|
||||
- `interval`: Interval at which the event should be triggered. The interval is defined by either a `Step` object,
|
||||
an `Iteration` object, or an `Epoch` object.
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
seed: int | None = None
|
||||
interval: Step | Iteration | Epoch = Step(1)
|
||||
|
||||
@field_validator("interval", mode="before")
|
||||
def parse_field(cls, value: TimeValueInput) -> TimeValue:
|
||||
return parse_number_unit_field(value)
|
||||
|
||||
|
||||
class IterationEventConfig(BaseModel):
|
||||
"""
|
||||
Base configuration for an event that is triggered only once per iteration.
|
||||
|
||||
- `seed`: Seed to use for the event. If `None`, the seed will not be set. The random state will be saved and
|
||||
restored after the event.
|
||||
- `interval`: Interval at which the event should be triggered. The interval is defined by an `Iteration` object or
|
||||
a `Epoch` object.
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
seed: int | None = None
|
||||
interval: Iteration | Epoch = Iteration(1)
|
||||
|
||||
@field_validator("interval", mode="before")
|
||||
def parse_field(cls, value: TimeValueInput) -> TimeValue:
|
||||
return parse_number_unit_field(value)
|
||||
|
||||
|
||||
class EpochEventConfig(BaseModel):
|
||||
"""
|
||||
Base configuration for an event that is triggered only once per epoch.
|
||||
|
||||
- `seed`: Seed to use for the event. If `None`, the seed will not be set. The random state will be saved and
|
||||
restored after the event.
|
||||
- `interval`: Interval at which the event should be triggered. The interval is defined by a `Epoch` object.
|
||||
"""
|
||||
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
seed: int | None = None
|
||||
interval: Epoch = Epoch(1)
|
||||
|
||||
@field_validator("interval", mode="before")
|
||||
def parse_field(cls, value: TimeValueInput) -> TimeValue:
|
||||
return parse_number_unit_field(value)
|
||||
|
||||
|
||||
EventConfig = StepEventConfig | IterationEventConfig | EpochEventConfig
|
||||
|
||||
|
||||
class CallbackConfig(BaseModel):
|
||||
"""
|
||||
Base configuration for a callback.
|
||||
|
@ -85,37 +16,9 @@ class CallbackConfig(BaseModel):
|
|||
"""
|
||||
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
on_epoch_begin: EpochEventConfig = EpochEventConfig()
|
||||
on_epoch_end: EpochEventConfig = EpochEventConfig()
|
||||
on_batch_begin: StepEventConfig = StepEventConfig()
|
||||
on_batch_end: StepEventConfig = StepEventConfig()
|
||||
on_backward_begin: StepEventConfig = StepEventConfig()
|
||||
on_backward_end: StepEventConfig = StepEventConfig()
|
||||
on_optimizer_step_begin: IterationEventConfig = IterationEventConfig()
|
||||
on_optimizer_step_end: IterationEventConfig = IterationEventConfig()
|
||||
on_compute_loss_begin: StepEventConfig = StepEventConfig()
|
||||
on_compute_loss_end: StepEventConfig = StepEventConfig()
|
||||
on_evaluate_begin: IterationEventConfig = IterationEventConfig()
|
||||
on_evaluate_end: IterationEventConfig = IterationEventConfig()
|
||||
on_lr_scheduler_step_begin: IterationEventConfig = IterationEventConfig()
|
||||
on_lr_scheduler_step_end: IterationEventConfig = IterationEventConfig()
|
||||
|
||||
|
||||
class Callback(Generic[T]):
|
||||
def run_event(self, trainer: T, callback_name: str, event_name: str) -> None:
|
||||
if not hasattr(self, event_name):
|
||||
return
|
||||
callback_config = getattr(trainer.config, callback_name)
|
||||
# For event that run once, there is no configuration to check, e.g. on_train_begin
|
||||
if not hasattr(callback_config, event_name):
|
||||
getattr(self, event_name)(trainer)
|
||||
return
|
||||
event_config = cast(EventConfig, getattr(callback_config, event_name))
|
||||
if not trainer.clock.is_due(event_config.interval):
|
||||
return
|
||||
with scoped_seed(event_config.seed):
|
||||
getattr(self, event_name)(trainer)
|
||||
|
||||
def on_init_begin(self, trainer: T) -> None: ...
|
||||
|
||||
def on_init_end(self, trainer: T) -> None: ...
|
||||
|
|
|
@ -424,8 +424,8 @@ class Trainer(Generic[ConfigType, Batch], ABC):
|
|||
item.model.eval()
|
||||
|
||||
def _call_callbacks(self, event_name: str) -> None:
|
||||
for name, callback in self.callbacks.items():
|
||||
callback.run_event(trainer=self, callback_name=name, event_name=event_name)
|
||||
for callback in self.callbacks.values():
|
||||
getattr(callback, event_name)(self)
|
||||
|
||||
def _load_callbacks(self) -> None:
|
||||
for name, config in self.config:
|
||||
|
|
|
@ -1,11 +1,9 @@
|
|||
[mock_callback.on_optimizer_step_begin]
|
||||
interval = "2:iteration"
|
||||
seed = 42
|
||||
[mock_callback]
|
||||
on_batch_end_interval = "3:step"
|
||||
on_batch_end_seed = 42
|
||||
on_optimizer_step_interval = "2:iteration"
|
||||
|
||||
|
||||
[mock_callback.on_batch_end]
|
||||
interval = "3:step"
|
||||
|
||||
|
||||
[mock_model]
|
||||
requires_grad = true
|
||||
|
|
|
@ -6,6 +6,7 @@ from typing import cast
|
|||
|
||||
import pytest
|
||||
import torch
|
||||
from pydantic import field_validator
|
||||
from torch import Tensor, nn
|
||||
from torch.optim import SGD
|
||||
|
||||
|
@ -16,8 +17,12 @@ from refiners.training_utils.common import (
|
|||
Epoch,
|
||||
Iteration,
|
||||
Step,
|
||||
TimeValue,
|
||||
TimeValueInput,
|
||||
count_learnable_parameters,
|
||||
human_readable_number,
|
||||
parse_number_unit_field,
|
||||
scoped_seed,
|
||||
)
|
||||
from refiners.training_utils.config import BaseConfig, ModelConfig
|
||||
from refiners.training_utils.trainer import (
|
||||
|
@ -41,9 +46,19 @@ class MockModelConfig(ModelConfig):
|
|||
use_activation: bool
|
||||
|
||||
|
||||
class MockCallbackConfig(CallbackConfig):
|
||||
on_batch_end_interval: Step | Iteration | Epoch
|
||||
on_batch_end_seed: int
|
||||
on_optimizer_step_interval: Iteration | Epoch
|
||||
|
||||
@field_validator("on_batch_end_interval", "on_optimizer_step_interval", mode="before")
|
||||
def parse_field(cls, value: TimeValueInput) -> TimeValue:
|
||||
return parse_number_unit_field(value)
|
||||
|
||||
|
||||
class MockConfig(BaseConfig):
|
||||
mock_model: MockModelConfig
|
||||
mock_callback: CallbackConfig
|
||||
mock_callback: MockCallbackConfig
|
||||
|
||||
|
||||
class MockModel(fl.Chain):
|
||||
|
@ -60,7 +75,8 @@ class MockModel(fl.Chain):
|
|||
|
||||
|
||||
class MockCallback(Callback["MockTrainer"]):
|
||||
def __init__(self) -> None:
|
||||
def __init__(self, config: MockCallbackConfig) -> None:
|
||||
self.config = config
|
||||
self.optimizer_step_count = 0
|
||||
self.batch_end_count = 0
|
||||
self.optimizer_step_random_int: int | None = None
|
||||
|
@ -70,12 +86,17 @@ class MockCallback(Callback["MockTrainer"]):
|
|||
pass
|
||||
|
||||
def on_optimizer_step_begin(self, trainer: "MockTrainer") -> None:
|
||||
if not trainer.clock.is_due(self.config.on_optimizer_step_interval):
|
||||
return
|
||||
self.optimizer_step_count += 1
|
||||
self.optimizer_step_random_int = random.randint(0, 100)
|
||||
|
||||
def on_batch_end(self, trainer: "MockTrainer") -> None:
|
||||
if not trainer.clock.is_due(self.config.on_batch_end_interval):
|
||||
return
|
||||
self.batch_end_count += 1
|
||||
self.batch_end_random_int = random.randint(0, 100)
|
||||
with scoped_seed(self.config.on_batch_end_seed):
|
||||
self.batch_end_random_int = random.randint(0, 100)
|
||||
|
||||
|
||||
class MockTrainer(Trainer[MockConfig, MockBatch]):
|
||||
|
@ -96,8 +117,8 @@ class MockTrainer(Trainer[MockConfig, MockBatch]):
|
|||
)
|
||||
|
||||
@register_callback()
|
||||
def mock_callback(self, config: CallbackConfig) -> MockCallback:
|
||||
return MockCallback()
|
||||
def mock_callback(self, config: MockCallbackConfig) -> MockCallback:
|
||||
return MockCallback(config)
|
||||
|
||||
@register_model()
|
||||
def mock_model(self, config: MockModelConfig) -> MockModel:
|
||||
|
@ -264,8 +285,8 @@ def test_callback_registration(mock_trainer: MockTrainer) -> None:
|
|||
assert mock_trainer.mock_callback.batch_end_count == mock_trainer.clock.step // 3
|
||||
|
||||
# Check that the random seed was set
|
||||
assert mock_trainer.mock_callback.optimizer_step_random_int == 81
|
||||
assert mock_trainer.mock_callback.batch_end_random_int == 72
|
||||
assert mock_trainer.mock_callback.optimizer_step_random_int == 93
|
||||
assert mock_trainer.mock_callback.batch_end_random_int == 81
|
||||
|
||||
|
||||
def test_training_short_cycle(mock_trainer_short: MockTrainer) -> None:
|
||||
|
|
Loading…
Reference in a new issue