mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-24 15:18:46 +00:00
utils: simplify normalize a bit
This commit is contained in:
parent
d6046e1fbf
commit
bce3910383
|
@ -4,10 +4,11 @@ from numpy import array, float32
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from safetensors import safe_open as _safe_open # type: ignore
|
from safetensors import safe_open as _safe_open # type: ignore
|
||||||
from safetensors.torch import save_file as _save_file # type: ignore
|
from safetensors.torch import save_file as _save_file # type: ignore
|
||||||
from torch import as_tensor, norm as _norm, manual_seed as _manual_seed # type: ignore
|
from torch import norm as _norm, manual_seed as _manual_seed # type: ignore
|
||||||
import torch
|
import torch
|
||||||
from torch.nn.functional import pad as _pad, interpolate as _interpolate # type: ignore
|
from torch.nn.functional import pad as _pad, interpolate as _interpolate # type: ignore
|
||||||
from torch import Tensor, device as Device, dtype as DType
|
from torch import Tensor, device as Device, dtype as DType
|
||||||
|
from jaxtyping import Float
|
||||||
|
|
||||||
|
|
||||||
T = TypeVar("T")
|
T = TypeVar("T")
|
||||||
|
@ -35,7 +36,9 @@ def interpolate(x: Tensor, factor: float | torch.Size, mode: str = "nearest") ->
|
||||||
|
|
||||||
|
|
||||||
# Adapted from https://github.com/pytorch/vision/blob/main/torchvision/transforms/_functional_tensor.py
|
# Adapted from https://github.com/pytorch/vision/blob/main/torchvision/transforms/_functional_tensor.py
|
||||||
def normalize(tensor: Tensor, mean: list[float], std: list[float], inplace: bool = False) -> Tensor:
|
def normalize(
|
||||||
|
tensor: Float[Tensor, "*batch channels height width"], mean: list[float], std: list[float], inplace: bool = False
|
||||||
|
) -> Float[Tensor, "*batch channels height width"]:
|
||||||
assert tensor.is_floating_point()
|
assert tensor.is_floating_point()
|
||||||
assert tensor.ndim >= 3
|
assert tensor.ndim >= 3
|
||||||
|
|
||||||
|
@ -43,19 +46,11 @@ def normalize(tensor: Tensor, mean: list[float], std: list[float], inplace: bool
|
||||||
tensor = tensor.clone()
|
tensor = tensor.clone()
|
||||||
|
|
||||||
dtype = tensor.dtype
|
dtype = tensor.dtype
|
||||||
|
mean_tensor = torch.tensor(mean, dtype=dtype, device=tensor.device).view(-1, 1, 1)
|
||||||
mean_tensor = as_tensor(mean, dtype=tensor.dtype, device=tensor.device)
|
std_tensor = torch.tensor(std, dtype=dtype, device=tensor.device).view(-1, 1, 1)
|
||||||
std_tensor = as_tensor(std, dtype=tensor.dtype, device=tensor.device)
|
|
||||||
|
|
||||||
if (std_tensor == 0).any():
|
if (std_tensor == 0).any():
|
||||||
raise ValueError(f"std evaluated to zero after conversion to {dtype}, leading to division by zero.")
|
raise ValueError(f"std evaluated to zero after conversion to {dtype}, leading to division by zero.")
|
||||||
|
|
||||||
if mean_tensor.ndim == 1:
|
|
||||||
mean_tensor = mean_tensor.view(-1, 1, 1)
|
|
||||||
|
|
||||||
if std_tensor.ndim == 1:
|
|
||||||
std_tensor = std_tensor.view(-1, 1, 1)
|
|
||||||
|
|
||||||
return tensor.sub_(mean_tensor).div_(std_tensor)
|
return tensor.sub_(mean_tensor).div_(std_tensor)
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue