mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-23 14:48:45 +00:00
apply @deltheil suggestions
This commit is contained in:
parent
9b2b109897
commit
cc73698d5b
|
@ -154,7 +154,7 @@ class CLIPTextEncoderL(CLIPTextEncoder):
|
||||||
|
|
||||||
Note:
|
Note:
|
||||||
We replace the GeLU activation function with an approximate GeLU to comply with the original CLIP implementation
|
We replace the GeLU activation function with an approximate GeLU to comply with the original CLIP implementation
|
||||||
of OpenAI (https://github.com/openai/CLIP/blob/main/clip/model.py#L166)
|
of OpenAI (https://github.com/openai/CLIP/blob/a1d0717/clip/model.py#L166)
|
||||||
|
|
||||||
See [[arXiv:2103.00020] Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)
|
See [[arXiv:2103.00020] Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)
|
||||||
for more details.
|
for more details.
|
||||||
|
|
|
@ -238,8 +238,6 @@ class LatentDiffusionAutoencoder(Chain):
|
||||||
x = decoder(x / self.encoder_scale)
|
x = decoder(x / self.encoder_scale)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
# backward-compatibility alias
|
|
||||||
# TODO: deprecate this method
|
|
||||||
def image_to_latents(self, image: Image.Image) -> Tensor:
|
def image_to_latents(self, image: Image.Image) -> Tensor:
|
||||||
return self.images_to_latents([image])
|
return self.images_to_latents([image])
|
||||||
|
|
||||||
|
@ -261,7 +259,6 @@ class LatentDiffusionAutoencoder(Chain):
|
||||||
def decode_latents(self, x: Tensor) -> Image.Image:
|
def decode_latents(self, x: Tensor) -> Image.Image:
|
||||||
return self.latents_to_image(x)
|
return self.latents_to_image(x)
|
||||||
|
|
||||||
# TODO: deprecated this method ?
|
|
||||||
def latents_to_image(self, x: Tensor) -> Image.Image:
|
def latents_to_image(self, x: Tensor) -> Image.Image:
|
||||||
if x.shape[0] != 1:
|
if x.shape[0] != 1:
|
||||||
raise ValueError(f"Expected batch size of 1, got {x.shape[0]}")
|
raise ValueError(f"Expected batch size of 1, got {x.shape[0]}")
|
||||||
|
|
|
@ -121,6 +121,10 @@ class Solver(fl.Module, ABC):
|
||||||
def remove_noise(self, x: Tensor, noise: Tensor, step: int) -> Tensor:
|
def remove_noise(self, x: Tensor, noise: Tensor, step: int) -> Tensor:
|
||||||
"""Remove noise from the input tensor using the current step of the diffusion process.
|
"""Remove noise from the input tensor using the current step of the diffusion process.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
See [[arXiv:2006.11239] Denoising Diffusion Probabilistic Models, Equation 15](https://arxiv.org/abs/2006.11239)
|
||||||
|
and [[arXiv:2210.00939] Improving Sample Quality of Diffusion Models Using Self-Attention Guidance](https://arxiv.org/abs/2210.00939).
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
x: The input tensor to remove noise from.
|
x: The input tensor to remove noise from.
|
||||||
noise: The noise tensor to remove from the input tensor.
|
noise: The noise tensor to remove from the input tensor.
|
||||||
|
@ -132,9 +136,6 @@ class Solver(fl.Module, ABC):
|
||||||
timestep = self.timesteps[step]
|
timestep = self.timesteps[step]
|
||||||
cumulative_scale_factors = self.cumulative_scale_factors[timestep]
|
cumulative_scale_factors = self.cumulative_scale_factors[timestep]
|
||||||
noise_stds = self.noise_std[timestep]
|
noise_stds = self.noise_std[timestep]
|
||||||
# See equation (15) from https://arxiv.org/pdf/2006.11239.pdf.
|
|
||||||
# Useful to preview progress or for guidance
|
|
||||||
# See also https://arxiv.org/pdf/2210.00939.pdf (self-attention guidance)
|
|
||||||
denoised_x = (x - noise_stds * noise) / cumulative_scale_factors
|
denoised_x = (x - noise_stds * noise) / cumulative_scale_factors
|
||||||
return denoised_x
|
return denoised_x
|
||||||
|
|
||||||
|
@ -196,6 +197,9 @@ class Solver(fl.Module, ABC):
|
||||||
This method should only be overridden by solvers that
|
This method should only be overridden by solvers that
|
||||||
need to scale the input according to the current timestep.
|
need to scale the input according to the current timestep.
|
||||||
|
|
||||||
|
By default, this method does not scale the input.
|
||||||
|
(scale=1)
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
x: The input tensor to scale.
|
x: The input tensor to scale.
|
||||||
step: The current step of the diffusion process.
|
step: The current step of the diffusion process.
|
||||||
|
|
|
@ -96,6 +96,9 @@ class StableDiffusion_1(LatentDiffusionModel):
|
||||||
def set_self_attention_guidance(self, enable: bool, scale: float = 1.0) -> None:
|
def set_self_attention_guidance(self, enable: bool, scale: float = 1.0) -> None:
|
||||||
"""Set whether to enable self-attention guidance.
|
"""Set whether to enable self-attention guidance.
|
||||||
|
|
||||||
|
See [[arXiv:2210.00939] Improving Sample Quality of Diffusion Models Using Self-Attention Guidance](https://arxiv.org/abs/2210.00939)
|
||||||
|
for more details.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
enable: Whether to enable self-attention guidance.
|
enable: Whether to enable self-attention guidance.
|
||||||
scale: The scale to use.
|
scale: The scale to use.
|
||||||
|
@ -114,7 +117,7 @@ class StableDiffusion_1(LatentDiffusionModel):
|
||||||
return self._find_sag_adapter() is not None
|
return self._find_sag_adapter() is not None
|
||||||
|
|
||||||
def _find_sag_adapter(self) -> SD1SAGAdapter | None:
|
def _find_sag_adapter(self) -> SD1SAGAdapter | None:
|
||||||
"""Finds the self-attention guidance adapter."""
|
"""Finds the self-attention guidance adapter, if any."""
|
||||||
for p in self.unet.get_parents():
|
for p in self.unet.get_parents():
|
||||||
if isinstance(p, SD1SAGAdapter):
|
if isinstance(p, SD1SAGAdapter):
|
||||||
return p
|
return p
|
||||||
|
|
|
@ -140,6 +140,9 @@ class StableDiffusion_XL(LatentDiffusionModel):
|
||||||
def set_self_attention_guidance(self, enable: bool, scale: float = 1.0) -> None:
|
def set_self_attention_guidance(self, enable: bool, scale: float = 1.0) -> None:
|
||||||
"""Sets the self-attention guidance.
|
"""Sets the self-attention guidance.
|
||||||
|
|
||||||
|
See [[arXiv:2210.00939] Improving Sample Quality of Diffusion Models Using Self-Attention Guidance](https://arxiv.org/abs/2210.00939)
|
||||||
|
for more details.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
enable: Whether to enable self-attention guidance or not.
|
enable: Whether to enable self-attention guidance or not.
|
||||||
scale: The scale to use.
|
scale: The scale to use.
|
||||||
|
@ -158,7 +161,7 @@ class StableDiffusion_XL(LatentDiffusionModel):
|
||||||
return self._find_sag_adapter() is not None
|
return self._find_sag_adapter() is not None
|
||||||
|
|
||||||
def _find_sag_adapter(self) -> SDXLSAGAdapter | None:
|
def _find_sag_adapter(self) -> SDXLSAGAdapter | None:
|
||||||
"""Finds the self-attention guidance adapter."""
|
"""Finds the self-attention guidance adapter, if any."""
|
||||||
for p in self.unet.get_parents():
|
for p in self.unet.get_parents():
|
||||||
if isinstance(p, SDXLSAGAdapter):
|
if isinstance(p, SDXLSAGAdapter):
|
||||||
return p
|
return p
|
||||||
|
|
|
@ -154,10 +154,10 @@ class SegmentAnything(fl.Module):
|
||||||
return w
|
return w
|
||||||
|
|
||||||
def compute_target_size(self, size: tuple[int, int]) -> tuple[int, int]:
|
def compute_target_size(self, size: tuple[int, int]) -> tuple[int, int]:
|
||||||
"""Compute the target size for a given size.
|
"""Compute the target size as expected by the image encoder.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
size: The size of the image.
|
size: The size of the input image.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
The target height.
|
The target height.
|
||||||
|
@ -171,7 +171,7 @@ class SegmentAnything(fl.Module):
|
||||||
return (newh, neww)
|
return (newh, neww)
|
||||||
|
|
||||||
def preprocess_image(self, image: Image.Image, target_size: tuple[int, int]) -> Tensor:
|
def preprocess_image(self, image: Image.Image, target_size: tuple[int, int]) -> Tensor:
|
||||||
"""Preprocess an image.
|
"""Preprocess an image without distorting its aspect ratio.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
image: The image to preprocess.
|
image: The image to preprocess.
|
||||||
|
|
Loading…
Reference in a new issue