mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-24 15:18:46 +00:00
refactor register_model decorator
This commit is contained in:
parent
d6546c9026
commit
cef8a9936c
|
@ -147,7 +147,6 @@ class OptimizerConfig(BaseModel):
|
|||
|
||||
|
||||
class ModelConfig(BaseModel):
|
||||
checkpoint: Path | None = None
|
||||
# If None, then requires_grad will NOT be changed when loading the model
|
||||
# this can be useful if you want to train only a part of the model
|
||||
requires_grad: bool | None = None
|
||||
|
@ -163,7 +162,6 @@ T = TypeVar("T", bound="BaseConfig")
|
|||
|
||||
|
||||
class BaseConfig(BaseModel):
|
||||
models: dict[str, ModelConfig]
|
||||
training: TrainingConfig
|
||||
optimizer: OptimizerConfig
|
||||
scheduler: SchedulerConfig
|
||||
|
|
|
@ -430,7 +430,9 @@ class Trainer(Generic[ConfigType, Batch], ABC):
|
|||
registered_callback(config)
|
||||
|
||||
def _load_models(self) -> None:
|
||||
for name, config in self.config.models.items():
|
||||
for name, config in self.config:
|
||||
if not isinstance(config, ModelConfig):
|
||||
continue
|
||||
try:
|
||||
registered_model = getattr(self, name)
|
||||
except AttributeError:
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
[models.mock_model]
|
||||
[mock_model]
|
||||
requires_grad = true
|
||||
|
||||
[clock]
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
[models.mock_model1]
|
||||
[mock_model1]
|
||||
requires_grad = true
|
||||
learning_rate = 1e-5
|
||||
|
||||
[models.mock_model2]
|
||||
[mock_model2]
|
||||
requires_grad = true
|
||||
|
||||
[clock]
|
||||
|
|
|
@ -28,7 +28,7 @@ class MockBatch:
|
|||
|
||||
|
||||
class MockConfig(BaseConfig):
|
||||
pass
|
||||
mock_model: ModelConfig
|
||||
|
||||
|
||||
class MockModel(fl.Chain):
|
||||
|
@ -230,9 +230,14 @@ class MockTrainerWith2Models(MockTrainer):
|
|||
return norm(outputs - targets)
|
||||
|
||||
|
||||
class MockConfig_2_Models(BaseConfig):
|
||||
mock_model1: ModelConfig
|
||||
mock_model2: ModelConfig
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_config_2_models(test_device: torch.device) -> MockConfig:
|
||||
return MockConfig.load_from_toml(Path(__file__).parent / "mock_config_2_models.toml")
|
||||
def mock_config_2_models() -> MockConfig_2_Models:
|
||||
return MockConfig_2_Models.load_from_toml(Path(__file__).parent / "mock_config_2_models.toml")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
|
Loading…
Reference in a new issue