mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-21 21:58:47 +00:00
implement foreground conditioned ic light
This commit is contained in:
parent
928da1ee1c
commit
d5728278e4
|
@ -19,6 +19,7 @@ class Args(argparse.Namespace):
|
|||
half: bool
|
||||
verbose: bool
|
||||
skip_init_check: bool
|
||||
override_weights: str | None
|
||||
|
||||
|
||||
def setup_converter(args: Args) -> ModelConverter:
|
||||
|
|
89
scripts/conversion/convert_ic_light.py
Normal file
89
scripts/conversion/convert_ic_light.py
Normal file
|
@ -0,0 +1,89 @@
|
|||
import argparse
|
||||
from pathlib import Path
|
||||
|
||||
from convert_diffusers_unet import Args as UNetArgs, setup_converter as setup_unet_converter
|
||||
from huggingface_hub import hf_hub_download # type: ignore
|
||||
|
||||
from refiners.fluxion.utils import load_from_safetensors, save_to_safetensors
|
||||
|
||||
|
||||
class Args(argparse.Namespace):
|
||||
source_path: str
|
||||
output_path: str | None
|
||||
subfolder: str
|
||||
half: bool
|
||||
verbose: bool
|
||||
reference_unet_path: str
|
||||
|
||||
|
||||
def main() -> None:
|
||||
parser = argparse.ArgumentParser(description="Converts IC-Light patch weights to work with Refiners")
|
||||
parser.add_argument(
|
||||
"--from",
|
||||
type=str,
|
||||
dest="source_path",
|
||||
default="lllyasviel/ic-light",
|
||||
help=(
|
||||
"Can be a path to a .bin file, a .safetensors file or a model name from the Hugging Face Hub. Default:"
|
||||
" lllyasviel/ic-light"
|
||||
),
|
||||
)
|
||||
parser.add_argument("--filename", type=str, default="iclight_sd15_fc.safetensors", help="Filename inside the hub.")
|
||||
parser.add_argument(
|
||||
"--to",
|
||||
type=str,
|
||||
dest="output_path",
|
||||
default=None,
|
||||
help=(
|
||||
"Output path (.safetensors) for converted model. If not provided, the output path will be the same as the"
|
||||
" source path."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--verbose",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Prints additional information during conversion. Default: False",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--reference-unet-path",
|
||||
type=str,
|
||||
dest="reference_unet_path",
|
||||
default="runwayml/stable-diffusion-v1-5",
|
||||
help="Path to the reference UNet weights.",
|
||||
)
|
||||
args = parser.parse_args(namespace=Args())
|
||||
if args.output_path is None:
|
||||
args.output_path = f"{Path(args.filename).stem}-refiners.safetensors"
|
||||
|
||||
patch_file = (
|
||||
Path(args.source_path)
|
||||
if args.source_path.endswith(".safetensors")
|
||||
else Path(
|
||||
hf_hub_download(
|
||||
repo_id=args.source_path,
|
||||
filename=args.filename,
|
||||
)
|
||||
)
|
||||
)
|
||||
patch_weights = load_from_safetensors(patch_file)
|
||||
|
||||
unet_args = UNetArgs(
|
||||
source_path=args.reference_unet_path,
|
||||
subfolder="unet",
|
||||
half=False,
|
||||
verbose=False,
|
||||
skip_init_check=True,
|
||||
override_weights=None,
|
||||
)
|
||||
converter = setup_unet_converter(args=unet_args)
|
||||
result = converter._convert_state_dict( # pyright: ignore[reportPrivateUsage]
|
||||
source_state_dict=patch_weights,
|
||||
target_state_dict=converter.target_model.state_dict(),
|
||||
state_dict_mapping=converter.get_mapping(),
|
||||
)
|
||||
save_to_safetensors(path=args.output_path, tensors=result)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -438,6 +438,14 @@ def download_sdxl_lightning_lora():
|
|||
)
|
||||
|
||||
|
||||
def download_ic_light():
|
||||
download_file(
|
||||
"https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fc.safetensors",
|
||||
dest_folder=test_weights_dir,
|
||||
expected_hash="bce70123",
|
||||
)
|
||||
|
||||
|
||||
def printg(msg: str):
|
||||
"""print in green color"""
|
||||
print("\033[92m" + msg + "\033[0m")
|
||||
|
@ -790,6 +798,16 @@ def convert_sdxl_lightning_base():
|
|||
)
|
||||
|
||||
|
||||
def convert_ic_light():
|
||||
run_conversion_script(
|
||||
"convert_ic_light.py",
|
||||
"tests/weights/iclight_sd15_fc.safetensors",
|
||||
"tests/weights/iclight_sd15_fc-refiners.safetensors",
|
||||
half=False,
|
||||
expected_hash="be315c1f",
|
||||
)
|
||||
|
||||
|
||||
def download_all():
|
||||
print(f"\nAll weights will be downloaded to {test_weights_dir}\n")
|
||||
download_sd15("runwayml/stable-diffusion-v1-5")
|
||||
|
@ -811,6 +829,7 @@ def download_all():
|
|||
download_lcm_lora()
|
||||
download_sdxl_lightning_base()
|
||||
download_sdxl_lightning_lora()
|
||||
download_ic_light()
|
||||
|
||||
|
||||
def convert_all():
|
||||
|
@ -830,6 +849,7 @@ def convert_all():
|
|||
convert_control_lora_fooocus()
|
||||
convert_lcm_base()
|
||||
convert_sdxl_lightning_base()
|
||||
convert_ic_light()
|
||||
|
||||
|
||||
def main():
|
||||
|
|
|
@ -0,0 +1,182 @@
|
|||
import torch
|
||||
from PIL import Image
|
||||
from torch.nn.init import zeros_ as zero_init
|
||||
|
||||
from refiners.fluxion import layers as fl
|
||||
from refiners.fluxion.utils import image_to_tensor, no_grad
|
||||
from refiners.foundationals.clip.text_encoder import CLIPTextEncoderL
|
||||
from refiners.foundationals.latent_diffusion.solvers.solver import Solver
|
||||
from refiners.foundationals.latent_diffusion.stable_diffusion_1.model import SD1Autoencoder, StableDiffusion_1
|
||||
from refiners.foundationals.latent_diffusion.stable_diffusion_1.unet import DownBlocks, SD1UNet
|
||||
|
||||
|
||||
class ICLight(StableDiffusion_1):
|
||||
"""
|
||||
IC-Light is a Stable Diffusion model that can be used to relight a reference image.
|
||||
|
||||
At initialization, the UNet will be patched to accept four additional input channels. Only the text-conditioned relighting model is supported for now.
|
||||
|
||||
```example
|
||||
import torch
|
||||
from huggingface_hub import hf_hub_download
|
||||
from PIL import Image
|
||||
|
||||
from refiners.fluxion.utils import load_from_safetensors, manual_seed, no_grad
|
||||
from refiners.foundationals.clip import CLIPTextEncoderL
|
||||
from refiners.foundationals.latent_diffusion.stable_diffusion_1 import SD1Autoencoder, SD1UNet
|
||||
from refiners.foundationals.latent_diffusion.stable_diffusion_1.ic_light import ICLight
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
dtype = torch.float32
|
||||
no_grad().__enter__()
|
||||
manual_seed(42)
|
||||
|
||||
sd = ICLight(
|
||||
patch_weights=load_from_safetensors(
|
||||
path=hf_hub_download(
|
||||
repo_id="refiners/ic_light.sd1_5.fc",
|
||||
filename="model.safetensors",
|
||||
),
|
||||
device=device,
|
||||
),
|
||||
unet=SD1UNet(in_channels=4, device=device, dtype=dtype).load_from_safetensors(
|
||||
tensors_path=hf_hub_download(
|
||||
repo_id="refiners/realistic_vision.v5_1.sd1_5.unet",
|
||||
filename="model.safetensors",
|
||||
)
|
||||
),
|
||||
clip_text_encoder=CLIPTextEncoderL(device=device, dtype=dtype).load_from_safetensors(
|
||||
tensors_path=hf_hub_download(
|
||||
repo_id="refiners/realistic_vision.v5_1.sd1_5.text_encoder",
|
||||
filename="model.safetensors",
|
||||
)
|
||||
),
|
||||
lda=SD1Autoencoder(device=device, dtype=dtype).load_from_safetensors(
|
||||
tensors_path=hf_hub_download(
|
||||
repo_id="refiners/realistic_vision.v5_1.sd1_5.autoencoder",
|
||||
filename="model.safetensors",
|
||||
)
|
||||
),
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
prompt = "soft lighting, high-quality professional image"
|
||||
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
||||
clip_text_embedding = sd.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
||||
|
||||
image = Image.open("reference-image.png").resize((512, 512))
|
||||
sd.set_ic_light_condition(image)
|
||||
|
||||
x = torch.randn(
|
||||
size=(1, 4, 64, 64),
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
for step in sd.steps:
|
||||
x = sd(
|
||||
x=x,
|
||||
step=step,
|
||||
clip_text_embedding=clip_text_embedding,
|
||||
condition_scale=1.5,
|
||||
)
|
||||
predicted_image = sd.lda.latents_to_image(x)
|
||||
|
||||
predicted_image.save("ic-light-output.png")
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
patch_weights: dict[str, torch.Tensor],
|
||||
unet: SD1UNet,
|
||||
lda: SD1Autoencoder | None = None,
|
||||
clip_text_encoder: CLIPTextEncoderL | None = None,
|
||||
solver: Solver | None = None,
|
||||
device: torch.device | str = "cpu",
|
||||
dtype: torch.dtype = torch.float32,
|
||||
) -> None:
|
||||
super().__init__(
|
||||
unet=unet,
|
||||
lda=lda,
|
||||
clip_text_encoder=clip_text_encoder,
|
||||
solver=solver,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
self._extend_conv_in()
|
||||
self._apply_patch(weights=patch_weights)
|
||||
|
||||
@no_grad()
|
||||
def _extend_conv_in(self) -> None:
|
||||
"""
|
||||
Extend to 8 the input channels of the first convolutional layer of the UNet.
|
||||
"""
|
||||
down_blocks = self.unet.ensure_find(DownBlocks)
|
||||
first_block = down_blocks.layer(0, fl.Chain)
|
||||
conv_in = first_block.ensure_find(fl.Conv2d)
|
||||
new_conv_in = fl.Conv2d(
|
||||
in_channels=conv_in.in_channels + 4,
|
||||
out_channels=conv_in.out_channels,
|
||||
kernel_size=(conv_in.kernel_size[0], conv_in.kernel_size[1]),
|
||||
padding=(int(conv_in.padding[0]), int(conv_in.padding[1])),
|
||||
device=conv_in.device,
|
||||
dtype=conv_in.dtype,
|
||||
)
|
||||
zero_init(new_conv_in.weight)
|
||||
new_conv_in.bias = conv_in.bias
|
||||
new_conv_in.weight[:, :4, :, :] = conv_in.weight
|
||||
first_block.replace(old_module=conv_in, new_module=new_conv_in)
|
||||
|
||||
def _apply_patch(self, weights: dict[str, torch.Tensor]) -> None:
|
||||
"""
|
||||
Apply the patch weights to the UNet, modifying inplace the state dict.
|
||||
"""
|
||||
current_state_dict = self.unet.state_dict()
|
||||
new_state_dict = {
|
||||
key: tensor + weights[key].to(tensor.device, tensor.dtype) for key, tensor in current_state_dict.items()
|
||||
}
|
||||
self.unet.load_state_dict(new_state_dict)
|
||||
|
||||
@staticmethod
|
||||
def compute_gray_composite(image: Image.Image, mask: Image.Image) -> Image.Image:
|
||||
"""
|
||||
Compute a grayscale composite of an image and a mask.
|
||||
"""
|
||||
assert mask.mode == "L", "Mask must be a grayscale image"
|
||||
assert image.size == mask.size, "Image and mask must have the same size"
|
||||
background = Image.new("RGB", image.size, (127, 127, 127))
|
||||
return Image.composite(image, background, mask)
|
||||
|
||||
def set_ic_light_condition(
|
||||
self, image: Image.Image, mask: Image.Image | None = None, use_rescaled_image: bool = False
|
||||
) -> None:
|
||||
"""
|
||||
Set the IC light condition.
|
||||
|
||||
If a mask is provided, it will be used to compute a grayscale composite of the image and the mask ; otherwise,
|
||||
the image will be used as is, but note that IC-Light requires a 127-valued gray background to work.
|
||||
|
||||
`use_rescaled_image` is used to rescale the image to [-1, 1] range. This is the expected range when using the
|
||||
Stable Diffusion autoencoder. But in the original code this part is skipped, giving different results.
|
||||
see https://github.com/lllyasviel/IC-Light/blob/788687452a2bad59633a401281c8aee91bdd3750/gradio_demo.py#L262-L265
|
||||
"""
|
||||
if mask is not None:
|
||||
image = self.compute_gray_composite(image=image, mask=mask)
|
||||
image_tensor = image_to_tensor(image, device=self.device, dtype=self.dtype)
|
||||
if use_rescaled_image:
|
||||
image_tensor = 2 * image_tensor - 1
|
||||
latents = self.lda.encode(image_tensor)
|
||||
self._ic_light_condition = latents
|
||||
|
||||
def __call__(
|
||||
self, x: torch.Tensor, step: int, *, clip_text_embedding: torch.Tensor, condition_scale: float = 2.0
|
||||
) -> torch.Tensor:
|
||||
assert self._ic_light_condition is not None, "Reference image not set, use `set_ic_light_condition` first"
|
||||
x = torch.cat((x, self._ic_light_condition), dim=1)
|
||||
return super().__call__(
|
||||
x,
|
||||
step,
|
||||
clip_text_embedding=clip_text_embedding,
|
||||
condition_scale=condition_scale,
|
||||
)
|
|
@ -12,6 +12,7 @@ from tests.utils import ensure_similar_images
|
|||
from refiners.fluxion.layers.attentions import ScaledDotProductAttention
|
||||
from refiners.fluxion.utils import image_to_tensor, load_from_safetensors, load_tensors, manual_seed, no_grad
|
||||
from refiners.foundationals.clip.concepts import ConceptExtender
|
||||
from refiners.foundationals.clip.text_encoder import CLIPTextEncoderL
|
||||
from refiners.foundationals.latent_diffusion import (
|
||||
ControlLoraAdapter,
|
||||
SD1ControlnetAdapter,
|
||||
|
@ -30,6 +31,8 @@ from refiners.foundationals.latent_diffusion.reference_only_control import Refer
|
|||
from refiners.foundationals.latent_diffusion.restart import Restart
|
||||
from refiners.foundationals.latent_diffusion.solvers import DDIM, Euler, NoiseSchedule, SolverParams
|
||||
from refiners.foundationals.latent_diffusion.solvers.dpm import DPMSolver
|
||||
from refiners.foundationals.latent_diffusion.stable_diffusion_1.ic_light import ICLight
|
||||
from refiners.foundationals.latent_diffusion.stable_diffusion_1.model import SD1Autoencoder
|
||||
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_diffusion import (
|
||||
SD1DiffusionTarget,
|
||||
SD1MultiDiffusion,
|
||||
|
@ -2564,3 +2567,58 @@ def test_multi_upscaler(
|
|||
) -> None:
|
||||
predicted_image = multi_upscaler.upscale(clarity_example)
|
||||
ensure_similar_images(predicted_image, expected_multi_upscaler, min_psnr=35, min_ssim=0.99)
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def expected_ic_light(ref_path: Path) -> Image.Image:
|
||||
return _img_open(ref_path / "expected_ic_light.png").convert("RGB")
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def ic_light_sd15_fc_weights(test_weights_path: Path) -> Path:
|
||||
return test_weights_path / "iclight_sd15_fc-refiners.safetensors"
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def ic_light_sd15_fc(
|
||||
ic_light_sd15_fc_weights: Path,
|
||||
unet_weights_std: Path,
|
||||
lda_weights: Path,
|
||||
text_encoder_weights: Path,
|
||||
test_device: torch.device,
|
||||
) -> ICLight:
|
||||
return ICLight(
|
||||
patch_weights=load_from_safetensors(ic_light_sd15_fc_weights),
|
||||
unet=SD1UNet(in_channels=4).load_from_safetensors(unet_weights_std),
|
||||
lda=SD1Autoencoder().load_from_safetensors(lda_weights),
|
||||
clip_text_encoder=CLIPTextEncoderL().load_from_safetensors(text_encoder_weights),
|
||||
device=test_device,
|
||||
)
|
||||
|
||||
|
||||
@no_grad()
|
||||
def test_ic_light(
|
||||
kitchen_dog: Image.Image,
|
||||
kitchen_dog_mask: Image.Image,
|
||||
ic_light_sd15_fc: ICLight,
|
||||
expected_ic_light: Image.Image,
|
||||
test_device: torch.device,
|
||||
) -> None:
|
||||
sd = ic_light_sd15_fc
|
||||
manual_seed(2)
|
||||
clip_text_embedding = sd.compute_clip_text_embedding(
|
||||
text="a photo of dog, purple neon lighting",
|
||||
negative_text="lowres, bad anatomy, bad hands, cropped, worst quality",
|
||||
)
|
||||
ic_light_condition = sd.compute_gray_composite(image=kitchen_dog, mask=kitchen_dog_mask.convert("L"))
|
||||
sd.set_ic_light_condition(ic_light_condition)
|
||||
x = torch.randn(1, 4, 64, 64, device=test_device)
|
||||
for step in sd.steps:
|
||||
x = sd(
|
||||
x,
|
||||
step=step,
|
||||
clip_text_embedding=clip_text_embedding,
|
||||
condition_scale=2.0,
|
||||
)
|
||||
predicted_image = sd.lda.latents_to_image(x)
|
||||
ensure_similar_images(predicted_image, expected_ic_light, min_psnr=35, min_ssim=0.99)
|
||||
|
|
|
@ -60,6 +60,7 @@ Special cases:
|
|||
- `expected_controlnet_canny_scale_decay.png`
|
||||
- `expected_multi_diffusion_dpm.png`
|
||||
- `expected_multi_upscaler.png`
|
||||
- `expected_ic_light.png`
|
||||
|
||||
## Other images
|
||||
|
||||
|
|
BIN
tests/e2e/test_diffusion_ref/expected_ic_light.png
Normal file
BIN
tests/e2e/test_diffusion_ref/expected_ic_light.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 438 KiB |
Loading…
Reference in a new issue