mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-24 23:28:45 +00:00
fix miscellaneous typos
This commit is contained in:
parent
d7aadf99de
commit
e36dda63fd
|
@ -364,7 +364,7 @@ python scripts/conversion/convert_diffusers_ip_adapter.py --from ip-adapter-plus
|
||||||
|
|
||||||
This will download and convert both IP-Adapter and CLIP Image Encoder pretrained weights.
|
This will download and convert both IP-Adapter and CLIP Image Encoder pretrained weights.
|
||||||
|
|
||||||
Then, in your Python code, simply instantiate a [`SDXLIPAdapter`][refiners.foundationals.latent_diffusion.stable_diffusion_xl.image_prompt.SDXLIPAdapter] targetting our `sdxl.unet`, and inject it using a simple `.inject()` call:
|
Then, in your Python code, simply instantiate a [`SDXLIPAdapter`][refiners.foundationals.latent_diffusion.stable_diffusion_xl.image_prompt.SDXLIPAdapter] targeting our `sdxl.unet`, and inject it using a simple `.inject()` call:
|
||||||
|
|
||||||
```py
|
```py
|
||||||
# IP-Adapter
|
# IP-Adapter
|
||||||
|
|
|
@ -55,7 +55,7 @@ class Chain(ContextModule):
|
||||||
|
|
||||||
This layer is the main building block of Fluxion.
|
This layer is the main building block of Fluxion.
|
||||||
It is used to compose other layers in a sequential manner.
|
It is used to compose other layers in a sequential manner.
|
||||||
Similary to [`torch.nn.Sequential`][torch.nn.Sequential],
|
Similarly to [`torch.nn.Sequential`][torch.nn.Sequential],
|
||||||
it calls each of its sub-layers in order, chaining their outputs as inputs to the next sublayer.
|
it calls each of its sub-layers in order, chaining their outputs as inputs to the next sublayer.
|
||||||
However, it also provides additional methods to manipulate its sub-layers and their context.
|
However, it also provides additional methods to manipulate its sub-layers and their context.
|
||||||
|
|
||||||
|
|
|
@ -131,7 +131,7 @@ class SDLoraManager:
|
||||||
SDLoraManager.auto_attach(unet_loras, self.unet, exclude=exclude)
|
SDLoraManager.auto_attach(unet_loras, self.unet, exclude=exclude)
|
||||||
|
|
||||||
def remove_loras(self, *names: str) -> None:
|
def remove_loras(self, *names: str) -> None:
|
||||||
"""Remove mulitple LoRAs from the target.
|
"""Remove multiple LoRAs from the target.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
names: The names of the LoRAs to remove.
|
names: The names of the LoRAs to remove.
|
||||||
|
@ -179,7 +179,7 @@ class SDLoraManager:
|
||||||
self.update_scales({name: scale})
|
self.update_scales({name: scale})
|
||||||
|
|
||||||
def update_scales(self, scales: dict[str, float], /) -> None:
|
def update_scales(self, scales: dict[str, float], /) -> None:
|
||||||
"""Update the scales of mulitple LoRAs.
|
"""Update the scales of multiple LoRAs.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
scales: The scales to update.
|
scales: The scales to update.
|
||||||
|
|
Loading…
Reference in a new issue