mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-22 06:08:46 +00:00
dinov2: add some coverage for registers
Those are not supported yet in HF: so just compared with a precomputed norm. Note: in the initial PR [1] the Refiners' implementation has been tested against the official code using Torch Hub. [1]: https://github.com/finegrain-ai/refiners/pull/132#issuecomment-1852021656
This commit is contained in:
parent
f0ea1a2509
commit
e7892254eb
|
@ -1,3 +1,4 @@
|
|||
from math import isclose
|
||||
from pathlib import Path
|
||||
from warnings import warn
|
||||
|
||||
|
@ -7,16 +8,23 @@ from transformers import AutoModel # type: ignore
|
|||
from transformers.models.dinov2.modeling_dinov2 import Dinov2Model # type: ignore
|
||||
|
||||
from refiners.fluxion.utils import load_from_safetensors, manual_seed
|
||||
from refiners.foundationals.dinov2 import DINOv2_base, DINOv2_large, DINOv2_small
|
||||
from refiners.foundationals.dinov2 import (
|
||||
DINOv2_base,
|
||||
DINOv2_base_reg,
|
||||
DINOv2_large,
|
||||
DINOv2_large_reg,
|
||||
DINOv2_small,
|
||||
DINOv2_small_reg,
|
||||
)
|
||||
from refiners.foundationals.dinov2.vit import ViT
|
||||
|
||||
# TODO: add DINOv2 with registers ("dinov2_vits14_reg", etc). At the time of writing, those are not yet supported in
|
||||
# transformers (https://github.com/huggingface/transformers/issues/27379). Alternatively, it is also possible to use
|
||||
# facebookresearch/dinov2 directly (https://github.com/finegrain-ai/refiners/pull/132).
|
||||
FLAVORS = [
|
||||
"dinov2_vits14",
|
||||
"dinov2_vitb14",
|
||||
"dinov2_vitl14",
|
||||
"dinov2_vits14_reg4",
|
||||
"dinov2_vitb14_reg4",
|
||||
"dinov2_vitl14_reg4",
|
||||
]
|
||||
|
||||
|
||||
|
@ -25,6 +33,26 @@ def flavor(request: pytest.FixtureRequest) -> str:
|
|||
return request.param
|
||||
|
||||
|
||||
# Temporary: see comments in `test_encoder_only`
|
||||
@pytest.fixture(scope="module")
|
||||
def seed_expected_norm(flavor: str) -> tuple[int, float]:
|
||||
match flavor:
|
||||
case "dinov2_vits14":
|
||||
return (42, 1977.9213867)
|
||||
case "dinov2_vitb14":
|
||||
return (42, 1902.6384277)
|
||||
case "dinov2_vitl14":
|
||||
return (42, 1763.9187011)
|
||||
case "dinov2_vits14_reg4":
|
||||
return (42, 989.2380981)
|
||||
case "dinov2_vitb14_reg4":
|
||||
return (42, 974.4362182)
|
||||
case "dinov2_vitl14_reg4":
|
||||
return (42, 924.8797607)
|
||||
case _:
|
||||
raise ValueError(f"Unexpected DINOv2 flavor: {flavor}")
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def our_backbone(test_weights_path: Path, flavor: str, test_device: torch.device) -> ViT:
|
||||
weights = test_weights_path / f"{flavor}_pretrain.safetensors"
|
||||
|
@ -38,6 +66,12 @@ def our_backbone(test_weights_path: Path, flavor: str, test_device: torch.device
|
|||
backbone = DINOv2_base(device=test_device)
|
||||
case "dinov2_vitl14":
|
||||
backbone = DINOv2_large(device=test_device)
|
||||
case "dinov2_vits14_reg4":
|
||||
backbone = DINOv2_small_reg(device=test_device)
|
||||
case "dinov2_vitb14_reg4":
|
||||
backbone = DINOv2_base_reg(device=test_device)
|
||||
case "dinov2_vitl14_reg4":
|
||||
backbone = DINOv2_large_reg(device=test_device)
|
||||
case _:
|
||||
raise ValueError(f"Unexpected DINOv2 flavor: {flavor}")
|
||||
tensors = load_from_safetensors(weights)
|
||||
|
@ -47,6 +81,12 @@ def our_backbone(test_weights_path: Path, flavor: str, test_device: torch.device
|
|||
|
||||
@pytest.fixture(scope="module")
|
||||
def dinov2_weights_path(test_weights_path: Path, flavor: str):
|
||||
# TODO: At the time of writing, those are not yet supported in transformers
|
||||
# (https://github.com/huggingface/transformers/issues/27379). Alternatively, it is also possible to use
|
||||
# facebookresearch/dinov2 directly (https://github.com/finegrain-ai/refiners/pull/132).
|
||||
if flavor.endswith("_reg4"):
|
||||
warn(f"DINOv2 with registers are not yet supported in Hugging Face, skipping")
|
||||
pytest.skip(allow_module_level=True)
|
||||
match flavor:
|
||||
case "dinov2_vits14":
|
||||
name = "dinov2-small"
|
||||
|
@ -89,3 +129,19 @@ def test_encoder(
|
|||
our_features = our_backbone(x)
|
||||
|
||||
assert (our_features - ref_features).abs().max() < 1e-3
|
||||
|
||||
|
||||
# Mainly for DINOv2 + registers coverage (this test can be removed once `test_encoder` supports all flavors)
|
||||
def test_encoder_only(
|
||||
our_backbone: ViT,
|
||||
seed_expected_norm: tuple[int, float],
|
||||
test_device: torch.device,
|
||||
):
|
||||
seed, expected_norm = seed_expected_norm
|
||||
manual_seed(seed)
|
||||
|
||||
x = torch.randn(1, 3, 518, 518).to(test_device)
|
||||
|
||||
our_features = our_backbone(x)
|
||||
|
||||
assert isclose(our_features.norm().item(), expected_norm, rel_tol=1e-04)
|
||||
|
|
Loading…
Reference in a new issue