write Training 101 guide

This commit is contained in:
Benjamin Trom 2024-02-26 14:29:18 +01:00
parent 91d1b46aa9
commit f1079fe8f1
8 changed files with 719 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

View file

@ -0,0 +1,718 @@
---
icon: material/book
---
# Training 101
This guide will walk you through training a model using Refiners. We built the `training_utils` module to provide a simple, flexible, statically type-safe interface.
We will use a simple model and a toy dataset for demonstration purposes. The model will be a simple [autoencoder](https://en.wikipedia.org/wiki/Autoencoder), and the dataset will be a synthetic dataset of rectangles
of different sizes.
## Pre-requisites
We recommend installing Refiners targeting a specific commit hash to avoid unexpected changes in the API. You also
get the benefit of having a perfectly reproducible environment.
- with rye (recommended):
```bash
rye add refiners[training] --git=https://github.com/finegrain-ai/refiners.git --branch=<insert-latest-commit-hash>
```
- with pip:
```bash
pip install "git+https://github.com/finegrain-ai/refiners.git@<insert-latest-commit-hash>#egg=refiners[training]"
```
## Model
Let's start by building our autoencoder using Refiners.
??? autoencoder "Expand to see the autoencoder model."
```py
from refiners.fluxion import layers as fl
class ConvBlock(fl.Chain):
def __init__(self, in_channels: int, out_channels: int) -> None:
super().__init__(
fl.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
padding=1,
groups=min(in_channels, out_channels)
),
fl.LayerNorm2d(out_channels),
fl.SiLU(),
fl.Conv2d(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=1,
padding=0,
),
fl.LayerNorm2d(out_channels),
fl.SiLU(),
)
class ResidualBlock(fl.Sum):
def __init__(self, in_channels: int, out_channels: int) -> None:
super().__init__(
ConvBlock(in_channels=in_channels, out_channels=out_channels),
fl.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
padding=1,
),
)
class Encoder(fl.Chain):
def __init__(self) -> None:
super().__init__(
ResidualBlock(in_channels=1, out_channels=8),
fl.Downsample(channels=8, scale_factor=2, register_shape=False),
ResidualBlock(in_channels=8, out_channels=16),
fl.Downsample(channels=16, scale_factor=2, register_shape=False),
ResidualBlock(in_channels=16, out_channels=32),
fl.Downsample(channels=32, scale_factor=2, register_shape=False),
fl.Reshape(2048),
fl.Linear(in_features=2048, out_features=256),
fl.SiLU(),
fl.Linear(in_features=256, out_features=256),
)
class Decoder(fl.Chain):
def __init__(self) -> None:
super().__init__(
fl.Linear(in_features=256, out_features=256),
fl.SiLU(),
fl.Linear(in_features=256, out_features=2048),
fl.Reshape(32, 8, 8),
ResidualBlock(in_channels=32, out_channels=32),
ResidualBlock(in_channels=32, out_channels=32),
fl.Upsample(channels=32, upsample_factor=2),
ResidualBlock(in_channels=32, out_channels=16),
ResidualBlock(in_channels=16, out_channels=16),
fl.Upsample(channels=16, upsample_factor=2),
ResidualBlock(in_channels=16, out_channels=8),
ResidualBlock(in_channels=8, out_channels=8),
fl.Upsample(channels=8, upsample_factor=2),
ResidualBlock(in_channels=8, out_channels=8),
ResidualBlock(in_channels=8, out_channels=1),
fl.Sigmoid(),
)
class Autoencoder(fl.Chain):
def __init__(self) -> None:
super().__init__(
Encoder(),
Decoder(),
)
@property
def encoder(self) -> Encoder:
return self.ensure_find(Encoder)
@property
def decoder(self) -> Decoder:
return self.ensure_find(Decoder)
```
We now have a fully functional autoencoder that takes an image with one channel of
size 64x64 and compresses it to a vector of size 256 (x16 compression). The decoder then takes this vector and reconstructs the original image.
```py
import torch
autoencoder = Autoencoder()
x = torch.randn(2, 1, 64, 64) # batch of 2 images
z = autoencoder.encoder(x) # [2, 256]
x_reconstructed = autoencoder.decoder(z) # [2, 1, 64, 64]
```
## Dataset
We will use a synthetic dataset of rectangles of different sizes. The dataset will be generated on the fly using this
simple function:
```python
import random
from typing import Generator
from PIL import Image
from refiners.fluxion.utils import image_to_tensor
def generate_mask(size: int, seed: int | None = None) -> Generator[torch.Tensor, None, None]:
"""Generate a tensor of a grayscale mask of size `size` using random rectangles."""
if seed is None:
seed = random.randint(0, 2**32 - 1)
random.seed(seed)
while True:
rectangle = Image.new(
"L", (random.randint(1, size), random.randint(1, size)), color=255
)
mask = Image.new("L", (size, size))
mask.paste(
rectangle,
(
random.randint(0, size - rectangle.width),
random.randint(0, size - rectangle.height),
),
)
tensor = image_to_tensor(mask)
if random.random() > 0.5:
tensor = 1 - tensor
yield tensor
```
To generate a mask, do:
```python
from refiners.fluxion.utils import tensor_to_image
mask = next(generate_mask(64, seed=42))
tensor_to_image(mask).save("mask.png")
```
Here are a few examples of generated images:
![alt text](sample-0.png)
![alt text](sample-1.png)
![alt text](sample-2.png)
## Trainer
We will now create a Trainer class to handle the training loop. This class will manage the model, the optimizer, the loss function, and the dataset. It will also orchestrate the training loop and the evaluation loop.
But first, we need to define the batch type that will be used to represent a batch for the forward and backward pass and the configuration associated with the trainer.
### Batch
Our batches are composed of a single tensor representing the images. We will define a simple `Batch` type to implement this.
```python
from dataclasses import dataclass
@dataclass
class Batch:
image: torch.Tensor
```
### Config
We will now define the configuration for the autoencoder. It holds the configuration for the training loop, the optimizer, and the learning rate scheduler. It should inherit `refiners.training_utils.BaseConfig` and has the following mandatory attributes:
- `TrainingConfig`: The configuration for the training loop, including the duration of the training, the batch size, device, dtype, etc.
- `OptimizerConfig`: The configuration for the optimizer, including the learning rate, weight decay, etc.
- `LRSchedulerConfig`: The configuration for the learning rate scheduler, including the scheduler type, parameters, etc.
Example:
```python
from refiners.training_utils import BaseConfig, TrainingConfig, OptimizerConfig, LRSchedulerConfig, Optimizers, LRSchedulers
class AutoencoderConfig(BaseConfig):
# Since we are using a synthetic dataset, we will use a arbitrary fixed epoch size.
epoch_size: int = 2048
training = TrainingConfig(
duration="1000:epoch",
batch_size=32,
device="cuda" if torch.cuda.is_available() else "cpu",
dtype="float32"
)
optimizer = OptimizerConfig(
optimizer=Optimizers.AdamW,
learning_rate=1e-4,
)
lr_scheduler = LRSchedulerConfig(
type=LRSchedulers.ConstantLR
)
config = AutoencoderConfig(
training=training,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
)
```
### Subclass
We can now define the Trainer subclass. It should inherit from `refiners.training_utils.Trainer` and implement the following methods:
- `get_item`: This method should take an index and return a Batch.
- `collate_fn`: This method should take a list of Batch and return a concatenated Batch.
- `dataset_length`: We implement this property to return the length of the dataset.
- `compute_loss`: This method should take a Batch and return the loss.
```python
from functools import cached_property
from refiners.training_utils import Trainer
class AutoencoderTrainer(Trainer[AutoencoderConfig, Batch]):
@cached_property
def image_generator(self) -> Generator[torch.Tensor, None, None]:
return generate_mask(size=64)
def get_item(self, index: int) -> Batch:
return Batch(image=next(self.image_generator).to(self.device, self.dtype))
def collate_fn(self, batch: list[Batch]) -> Batch:
return Batch(image=torch.cat([b.image for b in batch]))
@property
def dataset_length(self) -> int:
return self.config.epoch_size
def compute_loss(self, batch: Batch) -> torch.Tensor:
raise NotImplementedError("We'll implement this later")
trainer = AutoencoderTrainer(config)
```
### Model registration
For the Trainer to be able to handle the model, we need to register it.
We need two things to do so:
- Add `refiners.training_utils.ModelConfig` attribute to the Config named `autoencoder`.
- Add a method to the Trainer subclass that returns the model decorated with `@register_model` decorator. This method should take the `ModelConfig` as an argument. The Trainer's `__init__` will register the models and add any parameters to the optimizer that have `requires_grad` enabled.
After registering the model, the `self.autoencoder` attribute will be available in the Trainer.
```python
from refiners.training_utils import ModelConfig, register_model
class AutoencoderModelConfig(ModelConfig):
pass
class AutoencoderConfig(BaseConfig):
epoch_size: int = 2048
autoencoder: AutoencoderModelConfig
class AutoencoderTrainer(Trainer[AutoencoderConfig, Batch]):
@register_model()
def autoencoder(self, config: AutoencoderModelConfig) -> Autoencoder:
return Autoencoder()
def compute_loss(self, batch: Batch) -> torch.Tensor:
x_reconstructed = self.autoencoder.decoder(
self.autoencoder.encoder(batch.image)
)
return F.binary_cross_entropy(x_reconstructed, batch.image)
```
We now have a fully functional Trainer that can train our autoencoder. We can now call the `train` method to start the training loop.
```python
trainer.train()
```
![alt text](terminal-logging.png)
## Evaluation
We can also evaluate the model using the `compute_evaluation` method.
```python
training = TrainingConfig(
duration="1000:epoch",
batch_size=32,
device="cuda" if torch.cuda.is_available() else "cpu",
dtype="float32",
evaluation_interval="50:epoch" # We set the evaluation to be done every 10 epochs
)
class AutoencoderTrainer(Trainer[AutoencoderConfig, Batch]):
# ... other methods
def compute_evaluation(self) -> None:
generator = generate_mask(size=64, seed=0)
grid: list[tuple[Image.Image, Image.Image]] = []
for _ in range(4):
mask = next(generator).to(self.device, self.dtype)
x_reconstructed = self.autoencoder.decoder(
self.autoencoder.encoder(mask)
)
loss = F.mse_loss(x_reconstructed, mask)
logger.info(f"Validation loss: {loss.detach().cpu().item()}")
grid.append(
(tensor_to_image(mask), tensor_to_image((x_reconstructed>0.5).float()))
)
import matplotlib.pyplot as plt
_, axes = plt.subplots(4, 2, figsize=(8, 16))
for i, (mask, reconstructed) in enumerate(grid):
axes[i, 0].imshow(mask, cmap='gray')
axes[i, 0].axis('off')
axes[i, 0].set_title('Mask')
axes[i, 1].imshow(reconstructed, cmap='gray')
axes[i, 1].axis('off')
axes[i, 1].set_title('Reconstructed')
plt.tight_layout()
plt.savefig(f"result_{trainer.clock.epoch}.png")
plt.close()
```
![alt text](evaluation.png)
## Logging
Let's write a simple logging callback to log the loss and the reconstructed images during training. A callback is a class that inherits from `refiners.training_utils.Callback` and implement any of the following methods:
- `on_init_begin`
- `on_init_end`
- `on_train_begin`
- `on_train_end`
- `on_epoch_begin`
- `on_epoch_end`
- `on_batch_begin`
- `on_batch_end`
- `on_backward_begin`
- `on_backward_end`
- `on_optimizer_step_begin`
- `on_optimizer_step_end`
- `on_compute_loss_begin`
- `on_compute_loss_end`
- `on_evaluate_begin`
- `on_evaluate_end`
- `on_lr_scheduler_step_begin`
- `on_lr_scheduler_step_end`
We will implement the `on_epoch_end` method to log the loss and the reconstructed images and the `on_compute_loss_end` method to store the loss in a list.
```python
from refiners.training_utils import Callback
from loguru import logger
from typing import Any
class LoggingCallback(Callback[Any]):
losses: list[float] = []
def on_compute_loss_end(self, loss: torch.Tensor) -> None:
self.losses.append(loss.item())
def on_epoch_end(self, epoch: int) -> None:
mean_loss = sum(self.losses) / len(self.losses)
logger.info(f"Mean loss: {mean_loss}, epoch: {epoch}")
self.losses = []
```
Exactly like models, we need to register the callback to the Trainer. We can do so by adding a CallbackConfig attribute to the Config named `logging` and adding a method to the Trainer class that returns the callback decorated with `@register_callback` decorator.
```python
from refiners.training_utils import CallbackConfig, register_callback
class AutoencoderConfig(BaseConfig):
epoch_size: int = 2048
logging: CallbackConfig = CallbackConfig()
class AutoencoderTrainer(Trainer[AutoencoderConfig, Batch]):
# ... other methods
@register_callback()
def logging(self, config: CallbackConfig) -> LoggingCallback:
return LoggingCallback()
```
![alt text](loss-logging.png)
??? complete end-to-end code "Expand to see the full code."
```py
import random
from dataclasses import dataclass
from functools import cached_property
from typing import Any, Generator
import torch
from loguru import logger
from PIL import Image
from refiners.fluxion import layers as fl
from refiners.fluxion.utils import image_to_tensor, tensor_to_image
from refiners.training_utils import (
BaseConfig,
Callback,
CallbackConfig,
ClockConfig,
LRSchedulerConfig,
LRSchedulerType,
ModelConfig,
OptimizerConfig,
Optimizers,
Trainer,
TrainingConfig,
register_callback,
register_model,
)
from torch.nn import functional as F
class ConvBlock(fl.Chain):
def __init__(self, in_channels: int, out_channels: int) -> None:
super().__init__(
fl.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
padding=1,
groups=min(in_channels, out_channels)
),
fl.LayerNorm2d(out_channels),
fl.SiLU(),
fl.Conv2d(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=1,
padding=0,
),
fl.LayerNorm2d(out_channels),
fl.SiLU(),
)
class ResidualBlock(fl.Sum):
def __init__(self, in_channels: int, out_channels: int) -> None:
super().__init__(
ConvBlock(in_channels=in_channels, out_channels=out_channels),
fl.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
padding=1,
),
)
class Encoder(fl.Chain):
def __init__(self) -> None:
super().__init__(
ResidualBlock(in_channels=1, out_channels=8),
fl.Downsample(channels=8, scale_factor=2, register_shape=False),
ResidualBlock(in_channels=8, out_channels=16),
fl.Downsample(channels=16, scale_factor=2, register_shape=False),
ResidualBlock(in_channels=16, out_channels=32),
fl.Downsample(channels=32, scale_factor=2, register_shape=False),
fl.Reshape(2048),
fl.Linear(in_features=2048, out_features=256),
fl.SiLU(),
fl.Linear(in_features=256, out_features=256),
)
class Decoder(fl.Chain):
def __init__(self) -> None:
super().__init__(
fl.Linear(in_features=256, out_features=256),
fl.SiLU(),
fl.Linear(in_features=256, out_features=2048),
fl.Reshape(32, 8, 8),
ResidualBlock(in_channels=32, out_channels=32),
ResidualBlock(in_channels=32, out_channels=32),
fl.Upsample(channels=32, upsample_factor=2),
ResidualBlock(in_channels=32, out_channels=16),
ResidualBlock(in_channels=16, out_channels=16),
fl.Upsample(channels=16, upsample_factor=2),
ResidualBlock(in_channels=16, out_channels=8),
ResidualBlock(in_channels=8, out_channels=8),
fl.Upsample(channels=8, upsample_factor=2),
ResidualBlock(in_channels=8, out_channels=8),
ResidualBlock(in_channels=8, out_channels=1),
fl.Sigmoid(),
)
class Autoencoder(fl.Chain):
def __init__(self) -> None:
super().__init__(
Encoder(),
Decoder(),
)
@property
def encoder(self) -> Encoder:
return self.ensure_find(Encoder)
@property
def decoder(self) -> Decoder:
return self.ensure_find(Decoder)
def generate_mask(size: int, seed: int | None = None) -> Generator[torch.Tensor, None, None]:
"""Generate a tensor of a binary mask of size `size` using random rectangles."""
if seed is None:
seed = random.randint(0, 2**32 - 1)
random.seed(seed)
while True:
rectangle = Image.new(
"L", (random.randint(1, size), random.randint(1, size)), color=255
)
mask = Image.new("L", (size, size))
mask.paste(
rectangle,
(
random.randint(0, size - rectangle.width),
random.randint(0, size - rectangle.height),
),
)
tensor = image_to_tensor(mask)
if random.random() > 0.5:
tensor = 1 - tensor
yield tensor
@dataclass
class Batch:
image: torch.Tensor
class AutoencoderModelConfig(ModelConfig):
pass
class LoggingCallback(Callback[Trainer[Any, Any]]):
losses: list[float] = []
def on_compute_loss_end(self, trainer: Trainer[Any, Any]) -> None:
self.losses.append(trainer.loss.detach().cpu().item())
def on_epoch_end(self, trainer: Trainer[Any, Any]) -> None:
mean_loss = sum(self.losses) / len(self.losses)
logger.info(f"Mean loss: {mean_loss}, epoch: {trainer.clock.epoch}")
self.losses = []
class AutoencoderConfig(BaseConfig):
epoch_size: int = 2048
autoencoder: AutoencoderModelConfig
logging: CallbackConfig = CallbackConfig()
autoencoder_config = AutoencoderModelConfig(
requires_grad=True, # set during registration to set the requires_grad attribute of the model.
)
training = TrainingConfig(
duration="1000:epoch", # type: ignore
batch_size=32,
device="cuda" if torch.cuda.is_available() else "cpu",
dtype="float32",
evaluation_interval="50:epoch", # type: ignore
)
optimizer = OptimizerConfig(
optimizer=Optimizers.AdamW,
learning_rate=1e-4,
)
lr_scheduler = LRSchedulerConfig(
type=LRSchedulerType.CONSTANT_LR
)
config = AutoencoderConfig(
training=training,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
autoencoder=autoencoder_config,
clock=ClockConfig(verbose=False), # to disable the default clock logging
)
class AutoencoderTrainer(Trainer[AutoencoderConfig, Batch]):
@cached_property
def image_generator(self) -> Generator[torch.Tensor, None, None]:
return generate_mask(size=64)
def get_item(self, index: int) -> Batch:
return Batch(image=next(self.image_generator).to(self.device, self.dtype))
def collate_fn(self, batch: list[Batch]) -> Batch:
return Batch(image=torch.cat([b.image for b in batch]))
@property
def dataset_length(self) -> int:
return self.config.epoch_size
@register_model()
def autoencoder(self, config: AutoencoderModelConfig) -> Autoencoder:
return Autoencoder()
def compute_loss(self, batch: Batch) -> torch.Tensor:
x_reconstructed = self.autoencoder.decoder(
self.autoencoder.encoder(batch.image)
)
return F.binary_cross_entropy(x_reconstructed, batch.image)
def compute_evaluation(self) -> None:
generator = generate_mask(size=64, seed=0)
grid: list[tuple[Image.Image, Image.Image]] = []
validation_losses: list[float] = []
for _ in range(4):
mask = next(generator).to(self.device, self.dtype)
x_reconstructed = self.autoencoder.decoder(self.autoencoder.encoder(mask))
loss = F.mse_loss(x_reconstructed, mask)
validation_losses.append(loss.detach().cpu().item())
grid.append((tensor_to_image(mask), tensor_to_image((x_reconstructed>0.5).float())))
mean_loss = sum(validation_losses) / len(validation_losses)
logger.info(f"Mean validation loss: {mean_loss}, epoch: {self.clock.epoch}")
import matplotlib.pyplot as plt
_, axes = plt.subplots(4, 2, figsize=(8, 16)) # type: ignore
for i, (mask, reconstructed) in enumerate(grid):
axes[i, 0].imshow(mask, cmap="gray")
axes[i, 0].axis("off")
axes[i, 0].set_title("Mask")
axes[i, 1].imshow(reconstructed, cmap="gray")
axes[i, 1].axis("off")
axes[i, 1].set_title("Reconstructed")
plt.tight_layout()
plt.savefig(f"result_{trainer.clock.epoch}.png") # type: ignore
plt.close()
@register_callback()
def logging(self, config: CallbackConfig) -> LoggingCallback:
return LoggingCallback()
trainer = AutoencoderTrainer(config)
trainer.train()
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 161 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 134 KiB

View file

@ -67,6 +67,7 @@ nav:
- concepts/adapter/index.md
- Guides:
- Adapting SDXL: guides/adapting_sdxl/index.md
- Training 101: guides/training_101/index.md
- API Reference:
- Refiners: reference/
extra: