mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-21 13:48:46 +00:00
create SD1.5 MultiUpscaler pipeline
Co-authored-by: limiteinductive <benjamin@lagon.tech> Co-authored-by: Cédric Deltheil <355031+deltheil@users.noreply.github.com>
This commit is contained in:
parent
66cd0d57a1
commit
f3b5c8d3e1
|
@ -0,0 +1,372 @@
|
|||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import Any, Sequence
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch import Tensor
|
||||
from typing_extensions import TypeVar
|
||||
|
||||
from refiners.fluxion.utils import image_to_tensor, load_from_safetensors, manual_seed, no_grad
|
||||
from refiners.foundationals.clip.concepts import ConceptExtender
|
||||
from refiners.foundationals.latent_diffusion.lora import SDLoraManager
|
||||
from refiners.foundationals.latent_diffusion.multi_diffusion import DiffusionTarget, MultiDiffusion, Size
|
||||
from refiners.foundationals.latent_diffusion.solvers.dpm import DPMSolver
|
||||
from refiners.foundationals.latent_diffusion.solvers.solver import Solver
|
||||
from refiners.foundationals.latent_diffusion.stable_diffusion_1.controlnet import SD1ControlnetAdapter
|
||||
from refiners.foundationals.latent_diffusion.stable_diffusion_1.model import (
|
||||
StableDiffusion_1,
|
||||
)
|
||||
|
||||
Name = str
|
||||
|
||||
|
||||
@dataclass(kw_only=True)
|
||||
class UpscalerCheckpoints:
|
||||
"""
|
||||
Checkpoints for the multi upscaler.
|
||||
|
||||
Attributes:
|
||||
unet: The path to the Stable Diffusion 1 UNet checkpoint.
|
||||
clip_text_encoder: The path to the CLIP text encoder checkpoint.
|
||||
lda: The path to the LDA checkpoint.
|
||||
controlnet_tile: The path to the controlnet tile checkpoint.
|
||||
negative_embedding: The path to the negative embedding checkpoint.
|
||||
negative_embedding_key: The key for the negative embedding. If the negative embedding is a dictionary, this
|
||||
key is used to access the negative embedding. You can use a dot-separated path to access nested dictionaries.
|
||||
loras: A dictionary of LORAs to load. The key is the name of the LORA and the value is the path to the LORA
|
||||
checkpoint.
|
||||
"""
|
||||
|
||||
unet: Path
|
||||
clip_text_encoder: Path
|
||||
lda: Path
|
||||
controlnet_tile: Path
|
||||
negative_embedding: Path | None = None
|
||||
negative_embedding_key: str | None = None
|
||||
loras: dict[Name, Path] | None = None
|
||||
|
||||
|
||||
@dataclass(kw_only=True)
|
||||
class UpscalerTarget(DiffusionTarget):
|
||||
clip_text_embedding: Tensor
|
||||
controlnet_condition: Tensor
|
||||
condition_scale: float = 7.0
|
||||
|
||||
|
||||
T = TypeVar("T", bound=DiffusionTarget)
|
||||
|
||||
|
||||
class MultiUpscalerAbstract(MultiDiffusion[T], ABC):
|
||||
def __init__(self, checkpoints: UpscalerCheckpoints, device: torch.device, dtype: torch.dtype) -> None:
|
||||
self.device = device
|
||||
self.dtype = dtype
|
||||
self.sd = self.load_stable_diffusion(checkpoints)
|
||||
self.manager = self.load_loras(checkpoints.loras)
|
||||
self.controlnet = self.load_controlnet(checkpoints)
|
||||
self.negative_embedding_token = self.load_negative_embedding(
|
||||
checkpoints.negative_embedding, checkpoints.negative_embedding_key
|
||||
)
|
||||
|
||||
@abstractmethod
|
||||
def compute_targets(
|
||||
self,
|
||||
image: Image.Image,
|
||||
latent_size: Size,
|
||||
tile_size: Size,
|
||||
num_inference_steps: int,
|
||||
first_step: int,
|
||||
condition_scale: float,
|
||||
clip_text_embedding: torch.Tensor,
|
||||
) -> Sequence[T]: ...
|
||||
|
||||
@abstractmethod
|
||||
def diffuse_target(self, x: Tensor, step: int, target: T) -> Tensor: ...
|
||||
|
||||
def load_stable_diffusion(self, checkpoints: UpscalerCheckpoints) -> StableDiffusion_1:
|
||||
sd = StableDiffusion_1(device=self.device, dtype=self.dtype)
|
||||
sd.unet.load_from_safetensors(checkpoints.unet)
|
||||
sd.clip_text_encoder.load_from_safetensors(checkpoints.clip_text_encoder)
|
||||
sd.lda.load_from_safetensors(checkpoints.lda)
|
||||
return sd
|
||||
|
||||
def load_controlnet(self, checkpoints: UpscalerCheckpoints) -> SD1ControlnetAdapter:
|
||||
return SD1ControlnetAdapter(
|
||||
target=self.sd.unet,
|
||||
name="tile",
|
||||
weights=load_from_safetensors(checkpoints.controlnet_tile),
|
||||
).inject()
|
||||
|
||||
def load_loras(self, loras: dict[Name, Path] | None) -> SDLoraManager | None:
|
||||
if loras is None:
|
||||
return
|
||||
|
||||
manager = SDLoraManager(self.sd)
|
||||
for name, path in loras.items():
|
||||
manager.add_loras(name, tensors=load_from_safetensors(path))
|
||||
|
||||
return manager
|
||||
|
||||
def load_negative_embedding(self, path: Path | None, key: str | None) -> str:
|
||||
if path is None:
|
||||
return ""
|
||||
|
||||
embeddings: Tensor | dict[str, Any] = torch.load(path, weights_only=True) # type: ignore
|
||||
|
||||
if isinstance(embeddings, dict):
|
||||
assert key is not None, "Key must be provided to access the negative embedding."
|
||||
key_sequence = key.split(".")
|
||||
for key in key_sequence:
|
||||
assert (
|
||||
key in embeddings
|
||||
), f"Key {key} not found in the negative embedding dictionary. Available keys: {list(embeddings.keys())}"
|
||||
embeddings = embeddings[key]
|
||||
|
||||
assert isinstance(
|
||||
embeddings, torch.Tensor
|
||||
), f"The negative embedding must be a tensor, found {type(embeddings)}."
|
||||
assert embeddings.ndim == 2, f"The negative embedding must be a 2D tensor, found {embeddings.ndim}D tensor."
|
||||
|
||||
extender = ConceptExtender(self.sd.clip_text_encoder)
|
||||
negative_embedding_token = ", "
|
||||
for i, embedding in enumerate(embeddings):
|
||||
extender.add_concept(token=f"<{i}>", embedding=embedding)
|
||||
negative_embedding_token += f"<{i}> "
|
||||
extender.inject()
|
||||
|
||||
return negative_embedding_token
|
||||
|
||||
@no_grad()
|
||||
def compute_clip_text_embedding(self, prompt: str, negative_prompt: str, offload_to_cpu: bool = True) -> Tensor:
|
||||
"""Compute the CLIP text embedding for the prompt and negative prompt.
|
||||
|
||||
Args:
|
||||
prompt: The prompt to use for the upscaling.
|
||||
negative_prompt: The negative prompt to use for the upscaling.
|
||||
offload_to_cpu: Whether to offload the model to the CPU after computing the embedding.
|
||||
"""
|
||||
if self.negative_embedding_token:
|
||||
negative_prompt += self.negative_embedding_token
|
||||
|
||||
self.sd.clip_text_encoder.to(device=self.device, dtype=self.dtype)
|
||||
clip_text_embedding = self.sd.compute_clip_text_embedding(
|
||||
text=prompt,
|
||||
negative_text=negative_prompt,
|
||||
)
|
||||
if offload_to_cpu:
|
||||
self.sd.clip_text_encoder.to(torch.device("cpu"))
|
||||
|
||||
return clip_text_embedding
|
||||
|
||||
def diffuse_upscaler_target(self, x: Tensor, step: int, target: UpscalerTarget) -> Tensor:
|
||||
self.sd.solver = target.solver
|
||||
self.controlnet.set_controlnet_condition(target.controlnet_condition)
|
||||
return self.sd(
|
||||
x=x,
|
||||
step=step,
|
||||
clip_text_embedding=target.clip_text_embedding,
|
||||
condition_scale=target.condition_scale,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def resize_modulo_8(image: Image.Image, size: int = 768, on_short: bool = True) -> Image.Image:
|
||||
"""
|
||||
Resize an image respecting the aspect ratio and ensuring the size is a multiple of 8.
|
||||
|
||||
The `on_short` parameter determines whether the resizing is based on the shortest side.
|
||||
"""
|
||||
assert size % 8 == 0, "Size must be a multiple of 8 because this is the latent compression size."
|
||||
side_size = min(image.size) if on_short else max(image.size)
|
||||
scale = size / (side_size * 8)
|
||||
new_size = (int(image.width * scale) * 8, int(image.height * scale) * 8)
|
||||
return image.resize(new_size, resample=Image.Resampling.LANCZOS) # type: ignore
|
||||
|
||||
@no_grad()
|
||||
def pre_upscale(self, image: Image.Image, upscale_factor: float, **_: Any) -> Image.Image:
|
||||
"""
|
||||
Pre-upscale an image before the actual upscaling process.
|
||||
|
||||
You can override this method to implement custom pre-upscaling logic like using a ESRGAN model like in the
|
||||
original implementation.
|
||||
"""
|
||||
|
||||
return image.resize(
|
||||
(int(image.width * upscale_factor), int(image.height * upscale_factor)),
|
||||
resample=Image.Resampling.LANCZOS, # type: ignore
|
||||
)
|
||||
|
||||
def compute_upscaler_targets(
|
||||
self,
|
||||
image: Image.Image,
|
||||
latent_size: Size,
|
||||
tile_size: Size,
|
||||
num_inference_steps: int,
|
||||
first_step: int,
|
||||
condition_scale: float,
|
||||
clip_text_embedding: torch.Tensor,
|
||||
) -> Sequence[UpscalerTarget]:
|
||||
tiles = MultiDiffusion.generate_latent_tiles(size=latent_size, tile_size=tile_size, min_overlap=8)
|
||||
|
||||
targets: Sequence[UpscalerTarget] = []
|
||||
for tile in tiles:
|
||||
pixel_box = (tile.left * 8, tile.top * 8, tile.right * 8, tile.bottom * 8)
|
||||
pixel_tile = image.crop(pixel_box)
|
||||
solver = self.sd.solver.rebuild(num_inference_steps=num_inference_steps, first_inference_step=first_step)
|
||||
|
||||
target = UpscalerTarget(
|
||||
tile=tile,
|
||||
solver=solver,
|
||||
start_step=first_step,
|
||||
condition_scale=condition_scale,
|
||||
controlnet_condition=image_to_tensor(pixel_tile, device=self.device, dtype=self.dtype),
|
||||
clip_text_embedding=clip_text_embedding,
|
||||
)
|
||||
targets.append(target)
|
||||
|
||||
return targets
|
||||
|
||||
def diffuse_targets(
|
||||
self,
|
||||
targets: Sequence[T],
|
||||
image: Image.Image,
|
||||
latent_size: Size,
|
||||
first_step: int,
|
||||
autoencoder_tile_length: int,
|
||||
) -> Image.Image:
|
||||
noise = torch.randn(size=(1, 4, *latent_size), device=self.device, dtype=self.dtype)
|
||||
with self.sd.lda.tiled_inference(image, (autoencoder_tile_length, autoencoder_tile_length)):
|
||||
latents = self.sd.lda.tiled_image_to_latents(image)
|
||||
x = self.sd.solver.add_noise(x=latents, noise=noise, step=first_step)
|
||||
|
||||
for step in self.sd.steps:
|
||||
x = self(x, noise=noise, step=step, targets=targets)
|
||||
|
||||
return self.sd.lda.tiled_latents_to_image(x)
|
||||
|
||||
@no_grad()
|
||||
def upscale(
|
||||
self,
|
||||
image: Image.Image,
|
||||
prompt: str = "masterpiece, best quality, highres",
|
||||
negative_prompt: str = "worst quality, low quality, normal quality",
|
||||
upscale_factor: float = 2,
|
||||
downscale_size: int = 768,
|
||||
tile_size: tuple[int, int] = (144, 112),
|
||||
denoise_strength: float = 0.35,
|
||||
condition_scale: float = 6,
|
||||
controlnet_scale: float = 0.6,
|
||||
controlnet_scale_decay: float = 0.825,
|
||||
loras_scale: dict[Name, float] | None = None,
|
||||
solver_type: type[Solver] = DPMSolver,
|
||||
num_inference_steps: int = 18,
|
||||
autoencoder_tile_length: int = 1024,
|
||||
seed: int = 37,
|
||||
) -> Image.Image:
|
||||
"""
|
||||
Upscale an image using the multi upscaler.
|
||||
|
||||
Default settings follow closely to the original implementation https://github.com/philz1337x/clarity-upscaler/
|
||||
|
||||
Args:
|
||||
image: The image to upscale.
|
||||
prompt: The prompt to use for the upscaling.
|
||||
negative_prompt: The negative prompt to use for the upscaling. Original default has a weight of 2.0, but
|
||||
using prompt weighting is no supported yet in Refiners.
|
||||
upscale_factor: The factor to upscale the image by.
|
||||
downscale_size: The size to downscale the image along is short side to before upscaling. Must be a
|
||||
multiple of 8 because of latent compression.
|
||||
tile_size: The size (H, W) of the tiles to use for latent diffusion. The smaller the tile size, the more "fractal"
|
||||
the upscaling will be.
|
||||
denoise_strength: The strength of the denoising. A value of 0.0 means no denoising (so nothing happens),
|
||||
while a value of 1.0 means full denoising and maximum creativity.
|
||||
condition_scale: The scale of the condition. Higher values will create images with more contrast. This
|
||||
parameter is called "dynamic" or "HDR" in the original implementation.
|
||||
controlnet_scale: The scale of the Tile Controlnet. This parameter is called "resemblance" in the original
|
||||
implementation.
|
||||
controlnet_scale_decay: Applies an exponential decay to the controlnet scale on the blocks of the UNet. This
|
||||
has the effect of diminishing the controlnet scale in a subtle way. The default value is 0.825
|
||||
corresponding to the "Prompt is more important" parameter in the original implementation.
|
||||
loras_scale: The scale of the LORAs. This is a dictionary where the key is the name of the LORA and the value
|
||||
is the scale.
|
||||
solver_type: The type of solver to use for the latent diffusion. The default is the DPM solver.
|
||||
num_inference_steps: The number of inference steps to use for the latent diffusion. This is a trade-off
|
||||
between quality and speed.
|
||||
autoencoder_tile_length: The length of the autoencoder tiles. It shouldn't affect the end result, but
|
||||
lowering it can reduce GPU memory usage (but increase computation time).
|
||||
seed: The seed to use for the random number generator.
|
||||
"""
|
||||
manual_seed(seed)
|
||||
|
||||
# update controlnet scale
|
||||
self.controlnet.scale = controlnet_scale
|
||||
self.controlnet.scale_decay = controlnet_scale_decay
|
||||
|
||||
# update LoRA scales
|
||||
if self.manager is not None and loras_scale is not None:
|
||||
self.manager.update_scales(loras_scale)
|
||||
|
||||
# update the solver
|
||||
first_step = int(num_inference_steps * (1 - denoise_strength))
|
||||
self.sd.solver = solver_type(
|
||||
num_inference_steps=num_inference_steps,
|
||||
first_inference_step=first_step,
|
||||
device=self.device,
|
||||
dtype=self.dtype,
|
||||
)
|
||||
|
||||
# compute clip text embedding
|
||||
clip_text_embedding = self.compute_clip_text_embedding(prompt=prompt, negative_prompt=negative_prompt)
|
||||
|
||||
# prepare the image for the upscale
|
||||
image = self.resize_modulo_8(image, size=downscale_size)
|
||||
image = self.pre_upscale(image, upscale_factor=upscale_factor)
|
||||
|
||||
# compute the latent size and tile size
|
||||
latent_size = Size(height=image.height // 8, width=image.width // 8)
|
||||
tile_size = Size(height=tile_size[0], width=tile_size[1])
|
||||
|
||||
# split the image into tiles
|
||||
targets: Sequence[DiffusionTarget] = self.compute_targets(
|
||||
image=image,
|
||||
latent_size=latent_size,
|
||||
tile_size=tile_size,
|
||||
num_inference_steps=num_inference_steps,
|
||||
first_step=first_step,
|
||||
condition_scale=condition_scale,
|
||||
clip_text_embedding=clip_text_embedding,
|
||||
)
|
||||
|
||||
# diffuse the tiles
|
||||
return self.diffuse_targets(
|
||||
targets=targets,
|
||||
image=image,
|
||||
latent_size=latent_size,
|
||||
first_step=first_step,
|
||||
autoencoder_tile_length=autoencoder_tile_length,
|
||||
)
|
||||
|
||||
|
||||
class MultiUpscaler(MultiUpscalerAbstract[UpscalerTarget]):
|
||||
def diffuse_target(self, x: Tensor, step: int, target: UpscalerTarget) -> Tensor:
|
||||
return self.diffuse_upscaler_target(x=x, step=step, target=target)
|
||||
|
||||
def compute_targets(
|
||||
self,
|
||||
image: Image.Image,
|
||||
latent_size: Size,
|
||||
tile_size: Size,
|
||||
num_inference_steps: int,
|
||||
first_step: int,
|
||||
condition_scale: float,
|
||||
clip_text_embedding: torch.Tensor,
|
||||
) -> Sequence[UpscalerTarget]:
|
||||
return self.compute_upscaler_targets(
|
||||
image=image,
|
||||
latent_size=latent_size,
|
||||
tile_size=tile_size,
|
||||
num_inference_steps=num_inference_steps,
|
||||
first_step=first_step,
|
||||
condition_scale=condition_scale,
|
||||
clip_text_embedding=clip_text_embedding,
|
||||
)
|
Loading…
Reference in a new issue