mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-09 23:12:02 +00:00
test IP adapter scale setter
This commit is contained in:
parent
8341d3a74b
commit
f4ed7254fa
|
@ -3,8 +3,10 @@ from typing import overload
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
import refiners.fluxion.layers as fl
|
||||
from refiners.fluxion.utils import no_grad
|
||||
from refiners.foundationals.latent_diffusion import SD1IPAdapter, SD1UNet, SDXLIPAdapter, SDXLUNet
|
||||
from refiners.foundationals.latent_diffusion.image_prompt import ImageCrossAttention
|
||||
|
||||
|
||||
@overload
|
||||
|
@ -35,3 +37,23 @@ def test_inject_eject(k_unet: type[SD1UNet] | type[SDXLUNet], test_device: torch
|
|||
assert repr(unet) != initial_repr
|
||||
adapter.eject()
|
||||
assert repr(unet) == initial_repr
|
||||
|
||||
|
||||
@no_grad()
|
||||
@pytest.mark.parametrize("k_unet", [SD1UNet, SDXLUNet])
|
||||
def test_scale(k_unet: type[SD1UNet] | type[SDXLUNet], test_device: torch.device):
|
||||
unet = k_unet(in_channels=4, device=test_device, dtype=torch.float16)
|
||||
adapter = new_adapter(unet).inject()
|
||||
|
||||
def predicate(m: fl.Module, p: fl.Chain) -> bool:
|
||||
return isinstance(p, ImageCrossAttention) and isinstance(m, fl.Multiply)
|
||||
|
||||
for m, _ in unet.walk(predicate):
|
||||
assert isinstance(m, fl.Multiply)
|
||||
assert m.scale == 1.0
|
||||
|
||||
adapter.scale = 0.42
|
||||
assert adapter.scale == 0.42
|
||||
for m, _ in unet.walk(predicate):
|
||||
assert isinstance(m, fl.Multiply)
|
||||
assert m.scale == 0.42
|
||||
|
|
Loading…
Reference in a new issue