from pathlib import Path import pytest import torch from PIL import Image from tests.utils import ensure_similar_images from refiners.fluxion.utils import image_to_tensor, no_grad, tensor_to_image from refiners.foundationals.latent_diffusion.preprocessors.informative_drawings import InformativeDrawings def _img_open(path: Path) -> Image.Image: return Image.open(path) # type: ignore @pytest.fixture(scope="module") def diffusion_ref_path(test_e2e_path: Path) -> Path: return test_e2e_path / "test_diffusion_ref" @pytest.fixture(scope="module") def cutecat_init(diffusion_ref_path: Path) -> Image.Image: return _img_open(diffusion_ref_path / "cutecat_init.png").convert("RGB") @pytest.fixture def expected_image_informative_drawings(diffusion_ref_path: Path) -> Image.Image: return _img_open(diffusion_ref_path / "cutecat_guide_lineart.png").convert("RGB") @pytest.fixture def informative_drawings_model( controlnet_preprocessor_info_drawings_weights_path: Path, test_device: torch.device, ) -> InformativeDrawings: model = InformativeDrawings(device=test_device) model.load_from_safetensors(controlnet_preprocessor_info_drawings_weights_path) return model @no_grad() def test_preprocessor_informative_drawing( informative_drawings_model: InformativeDrawings, cutecat_init: Image.Image, expected_image_informative_drawings: Image.Image, test_device: torch.device, ): in_tensor = image_to_tensor(cutecat_init.convert("RGB"), device=test_device) out_tensor = informative_drawings_model(in_tensor) rgb_tensor = out_tensor.repeat(1, 3, 1, 1) # grayscale to RGB image = tensor_to_image(rgb_tensor) ensure_similar_images(image, expected_image_informative_drawings)