from pathlib import Path from warnings import warn import pytest import torch from PIL import Image from tests.utils import ensure_similar_images from refiners.fluxion.utils import load_from_safetensors, no_grad from refiners.foundationals.latent_diffusion.auto_encoder import LatentDiffusionAutoencoder @pytest.fixture(scope="module") def ref_path() -> Path: return Path(__file__).parent / "test_auto_encoder_ref" @pytest.fixture(scope="module") def lda(test_weights_path: Path, test_device: torch.device) -> LatentDiffusionAutoencoder: lda_weights = test_weights_path / "lda.safetensors" if not lda_weights.is_file(): warn(f"could not find weights at {lda_weights}, skipping") pytest.skip(allow_module_level=True) encoder = LatentDiffusionAutoencoder(device=test_device) tensors = load_from_safetensors(lda_weights) encoder.load_state_dict(tensors) return encoder @pytest.fixture(scope="module") def sample_image(ref_path: Path) -> Image.Image: test_image = ref_path / "macaw.png" if not test_image.is_file(): warn(f"could not reference image at {test_image}, skipping") pytest.skip(allow_module_level=True) img = Image.open(test_image) # type: ignore assert img.size == (512, 512) return img @no_grad() def test_encode_decode_image(lda: LatentDiffusionAutoencoder, sample_image: Image.Image): encoded = lda.image_to_latents(sample_image) decoded = lda.latents_to_image(encoded) assert decoded.mode == "RGB" # type: ignore # Ensure no saturation. The green channel (band = 1) must not max out. assert max(iter(decoded.getdata(band=1))) < 255 # type: ignore ensure_similar_images(sample_image, decoded, min_psnr=20, min_ssim=0.9) @no_grad() def test_encode_decode_images(lda: LatentDiffusionAutoencoder, sample_image: Image.Image): encoded = lda.images_to_latents([sample_image, sample_image]) images = lda.latents_to_images(encoded) assert isinstance(images, list) assert len(images) == 2 ensure_similar_images(sample_image, images[1], min_psnr=20, min_ssim=0.9) @no_grad() def test_tiled_autoencoder(lda: LatentDiffusionAutoencoder, sample_image: Image.Image): sample_image = sample_image.resize((2048, 2048)) # type: ignore with lda.tiled_inference(sample_image, tile_size=(512, 512)): encoded = lda.tiled_image_to_latents(sample_image) result = lda.tiled_latents_to_image(encoded) ensure_similar_images(sample_image, result, min_psnr=35, min_ssim=0.985) @no_grad() def test_tiled_autoencoder_rectangular_tiles(lda: LatentDiffusionAutoencoder, sample_image: Image.Image): sample_image = sample_image.resize((2048, 2048)) # type: ignore with lda.tiled_inference(sample_image, tile_size=(512, 1024)): encoded = lda.tiled_image_to_latents(sample_image) result = lda.tiled_latents_to_image(encoded) ensure_similar_images(sample_image, result, min_psnr=35, min_ssim=0.985) @no_grad() def test_tiled_autoencoder_large_tile(lda: LatentDiffusionAutoencoder, sample_image: Image.Image): sample_image = sample_image.resize((1024, 1024)) # type: ignore with lda.tiled_inference(sample_image, tile_size=(2048, 2048)): encoded = lda.tiled_image_to_latents(sample_image) result = lda.tiled_latents_to_image(encoded) ensure_similar_images(sample_image, result, min_psnr=34, min_ssim=0.975) @no_grad() def test_tiled_autoencoder_rectangular_image(lda: LatentDiffusionAutoencoder, sample_image: Image.Image): sample_image = sample_image.crop((0, 0, 300, 500)) sample_image = sample_image.resize((sample_image.width * 4, sample_image.height * 4)) # type: ignore with lda.tiled_inference(sample_image, tile_size=(512, 512)): encoded = lda.tiled_image_to_latents(sample_image) result = lda.tiled_latents_to_image(encoded) ensure_similar_images(sample_image, result, min_psnr=37, min_ssim=0.985) def test_value_error_tile_encode_no_context(lda: LatentDiffusionAutoencoder, sample_image: Image.Image) -> None: with pytest.raises(ValueError): lda.tiled_image_to_latents(sample_image) with pytest.raises(ValueError): lda.tiled_latents_to_image(torch.randn(1, 8, 16, 16, device=lda.device))