import torch from refiners.fluxion.utils import create_state_dict_mapping, convert_state_dict, save_to_safetensors from diffusers import StableDiffusionInpaintPipeline # type: ignore from diffusers.models.unet_2d_condition import UNet2DConditionModel # type: ignore from refiners.foundationals.latent_diffusion.stable_diffusion_1.unet import SD1UNet @torch.no_grad() def convert(src_model: UNet2DConditionModel) -> dict[str, torch.Tensor]: dst_model = SD1UNet(in_channels=9, clip_embedding_dim=768) x = torch.randn(1, 9, 32, 32) timestep = torch.tensor(data=[0]) clip_text_embeddings = torch.randn(1, 77, 768) src_args = (x, timestep, clip_text_embeddings) dst_model.set_timestep(timestep=timestep) dst_model.set_clip_text_embedding(clip_text_embedding=clip_text_embeddings) dst_args = (x,) mapping = create_state_dict_mapping(source_model=src_model, target_model=dst_model, source_args=src_args, target_args=dst_args) # type: ignore assert mapping is not None, "Model conversion failed" state_dict = convert_state_dict( source_state_dict=src_model.state_dict(), target_state_dict=dst_model.state_dict(), state_dict_mapping=mapping ) return {k: v.half() for k, v in state_dict.items()} def main() -> None: import argparse parser = argparse.ArgumentParser() parser.add_argument( "--from", type=str, dest="source", required=False, default="runwayml/stable-diffusion-inpainting", help="Source model", ) parser.add_argument( "--output-file", type=str, required=False, default="stable_diffusion_1_5_inpainting_unet.safetensors", help="Path for the output file", ) args = parser.parse_args() src_model = StableDiffusionInpaintPipeline.from_pretrained(pretrained_model_name_or_path=args.source).unet # type: ignore tensors = convert(src_model=src_model) # type: ignore save_to_safetensors(path=args.output_file, tensors=tensors) if __name__ == "__main__": main()