import torch from PIL import Image from refiners.fluxion.utils import manual_seed, no_grad from refiners.foundationals.latent_diffusion import StableDiffusion_1_Inpainting from refiners.foundationals.latent_diffusion.model import LatentDiffusionModel @no_grad() def test_sample_noise(): manual_seed(2) latents_0 = LatentDiffusionModel.sample_noise(size=(1, 4, 64, 64)) manual_seed(2) latents_1 = LatentDiffusionModel.sample_noise(size=(1, 4, 64, 64), offset_noise=0.0) assert torch.allclose(latents_0, latents_1, atol=1e-6, rtol=0) @no_grad() def test_sd1_inpainting(test_device: torch.device) -> None: sd = StableDiffusion_1_Inpainting(device=test_device) latent_noise = torch.randn(1, 4, 64, 64, device=test_device) target_image = Image.new("RGB", (512, 512)) mask = Image.new("L", (512, 512)) sd.set_inpainting_conditions(target_image=target_image, mask=mask) text_embedding = sd.compute_clip_text_embedding("") output = sd(latent_noise, step=0, clip_text_embedding=text_embedding) assert output.shape == (1, 4, 64, 64)