from pathlib import Path import numpy as np import piq # type: ignore import torch import torch.nn as nn from PIL import Image from transformers import T5EncoderModel, T5Tokenizer # type: ignore def compare_images(img_1: Image.Image, img_2: Image.Image) -> tuple[int, float]: x1, x2 = ( torch.tensor(np.array(x).astype(np.float32)).permute(2, 0, 1).unsqueeze(0) / 255.0 for x in (img_1, img_2) ) return (piq.psnr(x1, x2), piq.ssim(x1, x2).item()) # type: ignore def ensure_similar_images(img_1: Image.Image, img_2: Image.Image, min_psnr: int = 45, min_ssim: float = 0.99): psnr, ssim = compare_images(img_1, img_2) assert (psnr >= min_psnr) and ( ssim >= min_ssim ), f"PSNR {psnr} / SSIM {ssim}, expected at least {min_psnr} / {min_ssim}" class T5TextEmbedder(nn.Module): def __init__( self, pretrained_path: Path = Path("tests/weights/QQGYLab/T5XLFP16"), max_length: int | None = None ) -> None: super().__init__() # type: ignore[reportUnknownMemberType] self.model: nn.Module = T5EncoderModel.from_pretrained(pretrained_path, local_files_only=True) # type: ignore self.tokenizer: transformers.T5Tokenizer = T5Tokenizer.from_pretrained(pretrained_path, local_files_only=True) # type: ignore self.max_length = max_length def forward( self, caption: str, text_input_ids: torch.Tensor | None = None, attention_mask: torch.Tensor | None = None, max_length: int | None = None, ) -> torch.Tensor: if max_length is None: max_length = self.max_length if text_input_ids is None or attention_mask is None: if max_length is not None: text_inputs = self.tokenizer( # type: ignore caption, return_tensors="pt", add_special_tokens=True, max_length=max_length, padding="max_length", truncation=True, ) else: text_inputs = self.tokenizer(caption, return_tensors="pt", add_special_tokens=True) # type: ignore _text_input_ids: torch.Tensor = text_inputs.input_ids.to(self.model.device) # type: ignore _attention_mask: torch.Tensor = text_inputs.attention_mask.to(self.model.device) # type: ignore else: _text_input_ids: torch.Tensor = text_input_ids.to(self.model.device) # type: ignore _attention_mask: torch.Tensor = attention_mask.to(self.model.device) # type: ignore outputs = self.model(_text_input_ids, attention_mask=_attention_mask) embeddings = outputs.last_hidden_state return embeddings