from refiners.fluxion.adapters.lora import Lora, SingleLoraAdapter, LoraAdapter from torch import randn, allclose import refiners.fluxion.layers as fl def test_single_lora_adapter() -> None: chain = fl.Chain( fl.Chain( fl.Linear(in_features=1, out_features=1), fl.Linear(in_features=1, out_features=1), ), fl.Linear(in_features=1, out_features=2), ) x = randn(1, 1) y = chain(x) lora_adapter = SingleLoraAdapter(chain.Chain.Linear_1).inject(chain.Chain) assert isinstance(lora_adapter[1], Lora) assert allclose(input=chain(x), other=y) assert lora_adapter.parent == chain.Chain lora_adapter.eject() assert isinstance(chain.Chain[0], fl.Linear) assert len(chain) == 2 lora_adapter.inject(chain.Chain) assert isinstance(chain.Chain[0], SingleLoraAdapter) def test_lora_adapter() -> None: chain = fl.Chain( fl.Chain( fl.Linear(in_features=1, out_features=1), fl.Linear(in_features=1, out_features=1), ), fl.Linear(in_features=1, out_features=2), ) # create and inject twice a1 = LoraAdapter[fl.Chain](chain, sub_targets=chain.walk(fl.Linear), rank=1, scale=1.0).inject() assert len(list(chain.layers(Lora))) == 3 a2 = LoraAdapter[fl.Chain](chain, sub_targets=chain.walk(fl.Linear), rank=1, scale=1.0).inject() assert len(list(chain.layers(Lora))) == 6 # ejection in forward order a1.eject() assert len(list(chain.layers(Lora))) == 3 a2.eject() assert len(list(chain.layers(Lora))) == 0 # create twice then inject twice a1 = LoraAdapter[fl.Chain](chain, sub_targets=chain.walk(fl.Linear), rank=1, scale=1.0) a2 = LoraAdapter[fl.Chain](chain, sub_targets=chain.walk(fl.Linear), rank=1, scale=1.0) a1.inject() a2.inject() assert len(list(chain.layers(Lora))) == 6 # ejection in reverse order a2.eject() assert len(list(chain.layers(Lora))) == 3 a1.eject() assert len(list(chain.layers(Lora))) == 0