import gc from pathlib import Path from warnings import warn import pytest import torch from PIL import Image from tests.utils import ensure_similar_images from refiners.fluxion.utils import load_from_safetensors, manual_seed, no_grad from refiners.foundationals.latent_diffusion.lora import SDLoraManager from refiners.foundationals.latent_diffusion.solvers import Euler, ModelPredictionType, SolverParams, TimestepSpacing from refiners.foundationals.latent_diffusion.stable_diffusion_xl.lcm_lora import add_lcm_lora from refiners.foundationals.latent_diffusion.stable_diffusion_xl.model import StableDiffusion_XL def _img_open(path: Path) -> Image.Image: return Image.open(path) # type: ignore @pytest.fixture(autouse=True) def ensure_gc(): # Avoid GPU OOMs # See https://github.com/pytest-dev/pytest/discussions/8153#discussioncomment-214812 gc.collect() @pytest.fixture(scope="module") def ref_path(test_e2e_path: Path) -> Path: return test_e2e_path / "test_lightning_ref" @pytest.fixture def expected_lightning_base_4step(ref_path: Path) -> Image.Image: return _img_open(ref_path / "expected_lightning_base_4step.png").convert("RGB") @pytest.fixture def expected_lightning_base_1step(ref_path: Path) -> Image.Image: return _img_open(ref_path / "expected_lightning_base_1step.png").convert("RGB") @pytest.fixture def expected_lightning_lora_4step(ref_path: Path) -> Image.Image: return _img_open(ref_path / "expected_lightning_lora_4step.png").convert("RGB") @no_grad() def test_lightning_base_4step( test_device: torch.device, sdxl_autoencoder_fp16fix_weights_path: Path, sdxl_unet_lightning_4step_weights_path: Path, sdxl_text_encoder_weights_path: Path, expected_lightning_base_4step: Image.Image, ) -> None: if test_device.type == "cpu": warn(message="not running on CPU, skipping") pytest.skip() unet_weights = sdxl_unet_lightning_4step_weights_path expected_image = expected_lightning_base_4step solver = Euler( num_inference_steps=4, params=SolverParams( timesteps_spacing=TimestepSpacing.TRAILING, model_prediction_type=ModelPredictionType.NOISE, ), ) sdxl = StableDiffusion_XL(device=test_device, dtype=torch.float16, solver=solver) sdxl.classifier_free_guidance = False sdxl.clip_text_encoder.load_from_safetensors(sdxl_text_encoder_weights_path) sdxl.lda.load_from_safetensors(sdxl_autoencoder_fp16fix_weights_path) sdxl.unet.load_from_safetensors(unet_weights) prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k" clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(prompt) time_ids = sdxl.default_time_ids manual_seed(0) x = sdxl.init_latents((1024, 1024)).to(sdxl.device, sdxl.dtype) for step in sdxl.steps: x = sdxl( x, step=step, clip_text_embedding=clip_text_embedding, pooled_text_embedding=pooled_text_embedding, time_ids=time_ids, ) predicted_image = sdxl.lda.latents_to_image(x) ensure_similar_images(predicted_image, expected_image) @no_grad() def test_lightning_base_1step( test_device: torch.device, sdxl_autoencoder_fp16fix_weights_path: Path, sdxl_unet_lightning_1step_weights_path: Path, sdxl_text_encoder_weights_path: Path, expected_lightning_base_1step: Image.Image, ) -> None: if test_device.type == "cpu": warn(message="not running on CPU, skipping") pytest.skip() unet_weights = sdxl_unet_lightning_1step_weights_path expected_image = expected_lightning_base_1step solver = Euler( num_inference_steps=1, params=SolverParams( timesteps_spacing=TimestepSpacing.TRAILING, model_prediction_type=ModelPredictionType.SAMPLE, # 1 step special case ), ) sdxl = StableDiffusion_XL(device=test_device, dtype=torch.float16, solver=solver) sdxl.classifier_free_guidance = False sdxl.clip_text_encoder.load_from_safetensors(sdxl_text_encoder_weights_path) sdxl.lda.load_from_safetensors(sdxl_autoencoder_fp16fix_weights_path) sdxl.unet.load_from_safetensors(unet_weights) prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k" clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(prompt) time_ids = sdxl.default_time_ids manual_seed(0) x = sdxl.init_latents((1024, 1024)).to(sdxl.device, sdxl.dtype) for step in sdxl.steps: x = sdxl( x, step=step, clip_text_embedding=clip_text_embedding, pooled_text_embedding=pooled_text_embedding, time_ids=time_ids, ) predicted_image = sdxl.lda.latents_to_image(x) ensure_similar_images(predicted_image, expected_image) @no_grad() def test_lightning_lora_4step( test_device: torch.device, sdxl_autoencoder_fp16fix_weights_path: Path, sdxl_unet_weights_path: Path, sdxl_text_encoder_weights_path: Path, lora_sdxl_lightning_4step_weights_path: Path, expected_lightning_lora_4step: Image.Image, ) -> None: if test_device.type == "cpu": warn(message="not running on CPU, skipping") pytest.skip() expected_image = expected_lightning_lora_4step solver = Euler( num_inference_steps=4, params=SolverParams( timesteps_spacing=TimestepSpacing.TRAILING, model_prediction_type=ModelPredictionType.NOISE, ), ) sdxl = StableDiffusion_XL(device=test_device, dtype=torch.float16, solver=solver) sdxl.classifier_free_guidance = False sdxl.clip_text_encoder.load_from_safetensors(sdxl_text_encoder_weights_path) sdxl.lda.load_from_safetensors(sdxl_autoencoder_fp16fix_weights_path) sdxl.unet.load_from_safetensors(sdxl_unet_weights_path) manager = SDLoraManager(sdxl) add_lcm_lora(manager, load_from_safetensors(lora_sdxl_lightning_4step_weights_path), name="lightning") prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k" clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(prompt) time_ids = sdxl.default_time_ids manual_seed(0) x = sdxl.init_latents((1024, 1024)).to(sdxl.device, sdxl.dtype) for step in sdxl.steps: x = sdxl( x, step=step, clip_text_embedding=clip_text_embedding, pooled_text_embedding=pooled_text_embedding, time_ids=time_ids, ) predicted_image = sdxl.lda.latents_to_image(x) ensure_similar_images(predicted_image, expected_image)