import torch import pytest from warnings import warn from PIL import Image from pathlib import Path from refiners.fluxion.utils import load_from_safetensors from refiners.foundationals.latent_diffusion.auto_encoder import LatentDiffusionAutoencoder from tests.utils import ensure_similar_images @pytest.fixture(scope="module") def ref_path() -> Path: return Path(__file__).parent / "test_auto_encoder_ref" @pytest.fixture(scope="module") def encoder(test_weights_path: Path, test_device: torch.device) -> LatentDiffusionAutoencoder: lda_weights = test_weights_path / "lda.safetensors" if not lda_weights.is_file(): warn(f"could not find weights at {lda_weights}, skipping") pytest.skip(allow_module_level=True) encoder = LatentDiffusionAutoencoder(device=test_device) tensors = load_from_safetensors(lda_weights) encoder.load_state_dict(tensors) return encoder @pytest.fixture(scope="module") def sample_image(ref_path: Path) -> Image.Image: test_image = ref_path / "macaw.png" if not test_image.is_file(): warn(f"could not reference image at {test_image}, skipping") pytest.skip(allow_module_level=True) img = Image.open(test_image) assert img.size == (512, 512) return img @torch.no_grad() def test_encode_decode(encoder: LatentDiffusionAutoencoder, sample_image: Image.Image): encoded = encoder.encode_image(sample_image) decoded = encoder.decode_latents(encoded) assert decoded.mode == "RGB" # Ensure no saturation. The green channel (band = 1) must not max out. assert max(iter(decoded.getdata(band=1))) < 255 # type: ignore ensure_similar_images(sample_image, decoded, min_psnr=20, min_ssim=0.9)