mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-22 06:08:46 +00:00
120 lines
4.1 KiB
Python
120 lines
4.1 KiB
Python
from pathlib import Path
|
|
|
|
import pytest
|
|
import torch
|
|
import transformers # type: ignore
|
|
|
|
from refiners.fluxion.utils import load_from_safetensors, no_grad
|
|
from refiners.foundationals.clip.text_encoder import CLIPTextEncoderL
|
|
from refiners.foundationals.clip.tokenizer import CLIPTokenizer
|
|
|
|
long_prompt = """
|
|
Above these apparent hieroglyphics was a figure of evidently pictorial intent,
|
|
though its impressionistic execution forbade a very clear idea of its nature.
|
|
It seemed to be a sort of monster, or symbol representing a monster, of a form
|
|
which only a diseased fancy could conceive. If I say that my somewhat extravagant
|
|
imagination yielded simultaneous pictures of an octopus, a dragon, and a human
|
|
caricature, I shall not be unfaithful to the spirit of the thing. A pulpy,
|
|
tentacled head surmounted a grotesque and scaly body with rudimentary wings;
|
|
but it was the general outline of the whole which made it most shockingly frightful.
|
|
Behind the figure was a vague suggestion of a Cyclopean architectural background.
|
|
"""
|
|
|
|
PROMPTS = [
|
|
"", # empty
|
|
"a cute cat", # padded
|
|
"<long prompt>", # see above, truncated
|
|
"64k", # FG-362 - encoded as 3 tokens
|
|
]
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def our_encoder(
|
|
sd15_text_encoder_weights_path: Path,
|
|
test_device: torch.device,
|
|
test_dtype_fp32_fp16: torch.dtype,
|
|
) -> CLIPTextEncoderL:
|
|
encoder = CLIPTextEncoderL(device=test_device, dtype=test_dtype_fp32_fp16)
|
|
tensors = load_from_safetensors(sd15_text_encoder_weights_path)
|
|
|
|
encoder.load_state_dict(tensors)
|
|
return encoder
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def ref_tokenizer(
|
|
sd15_diffusers_runwayml_path: str,
|
|
use_local_weights: bool,
|
|
) -> transformers.CLIPTokenizer:
|
|
return transformers.CLIPTokenizer.from_pretrained( # type: ignore
|
|
sd15_diffusers_runwayml_path,
|
|
local_files_only=use_local_weights,
|
|
subfolder="tokenizer",
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def ref_encoder(
|
|
sd15_diffusers_runwayml_path: str,
|
|
test_device: torch.device,
|
|
test_dtype_fp32_fp16: torch.dtype,
|
|
use_local_weights: bool,
|
|
) -> transformers.CLIPTextModel:
|
|
return transformers.CLIPTextModel.from_pretrained( # type: ignore
|
|
sd15_diffusers_runwayml_path,
|
|
local_files_only=use_local_weights,
|
|
subfolder="text_encoder",
|
|
).to(device=test_device, dtype=test_dtype_fp32_fp16) # type: ignore
|
|
|
|
|
|
def test_basics(ref_tokenizer: transformers.CLIPTokenizer, our_encoder: CLIPTextEncoderL):
|
|
assert ref_tokenizer.model_max_length == 77 # type: ignore
|
|
assert our_encoder.max_sequence_length == 77
|
|
|
|
|
|
@pytest.fixture(params=PROMPTS)
|
|
def prompt(request: pytest.FixtureRequest):
|
|
return long_prompt if request.param == "<long prompt>" else request.param
|
|
|
|
|
|
@no_grad()
|
|
def test_encoder(
|
|
prompt: str,
|
|
ref_tokenizer: transformers.CLIPTokenizer,
|
|
ref_encoder: transformers.CLIPTextModel,
|
|
our_encoder: CLIPTextEncoderL,
|
|
):
|
|
ref_tokens = ref_tokenizer( # type: ignore
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=ref_tokenizer.model_max_length, # type: ignore
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
).input_ids
|
|
assert isinstance(ref_tokens, torch.Tensor)
|
|
tokenizer = our_encoder.ensure_find(CLIPTokenizer)
|
|
our_tokens = tokenizer(prompt)
|
|
assert torch.equal(our_tokens, ref_tokens)
|
|
|
|
ref_embeddings = ref_encoder(ref_tokens.to(device=ref_encoder.device))[0]
|
|
our_embeddings = our_encoder(prompt)
|
|
|
|
assert ref_embeddings.shape == (1, 77, 768)
|
|
assert our_embeddings.shape == (1, 77, 768)
|
|
|
|
# FG-336 - Not strictly equal because we do not use the same implementation
|
|
# of self-attention. We use `scaled_dot_product_attention` which can have
|
|
# numerical differences depending on the backend. Also we use FP16 weights.
|
|
torch.testing.assert_close(our_embeddings, ref_embeddings, atol=0.035, rtol=0.0)
|
|
|
|
|
|
def test_list_string_tokenizer(
|
|
prompt: str,
|
|
our_encoder: CLIPTextEncoderL,
|
|
):
|
|
tokenizer = our_encoder.ensure_find(CLIPTokenizer)
|
|
|
|
# batched inputs
|
|
double_tokens = tokenizer([prompt, prompt[0:3]])
|
|
assert double_tokens.shape[0] == 2
|