mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-24 15:18:46 +00:00
1236 lines
43 KiB
Python
1236 lines
43 KiB
Python
import torch
|
|
import pytest
|
|
|
|
from typing import Iterator
|
|
|
|
from warnings import warn
|
|
from PIL import Image
|
|
from pathlib import Path
|
|
|
|
from refiners.fluxion.utils import load_from_safetensors, image_to_tensor, manual_seed
|
|
from refiners.foundationals.latent_diffusion import (
|
|
StableDiffusion_1,
|
|
StableDiffusion_1_Inpainting,
|
|
SD1UNet,
|
|
SD1ControlnetAdapter,
|
|
SD1IPAdapter,
|
|
SDXLIPAdapter,
|
|
)
|
|
from refiners.foundationals.latent_diffusion.lora import SD1LoraAdapter
|
|
from refiners.foundationals.latent_diffusion.multi_diffusion import DiffusionTarget
|
|
from refiners.foundationals.latent_diffusion.schedulers import DDIM
|
|
from refiners.foundationals.latent_diffusion.reference_only_control import ReferenceOnlyControlAdapter
|
|
from refiners.foundationals.clip.concepts import ConceptExtender
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_diffusion import SD1MultiDiffusion
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.model import StableDiffusion_XL
|
|
|
|
from tests.utils import ensure_similar_images
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def ref_path(test_e2e_path: Path) -> Path:
|
|
return test_e2e_path / "test_diffusion_ref"
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def cutecat_init(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "cutecat_init.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def kitchen_dog(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "kitchen_dog.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def kitchen_dog_mask(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "kitchen_dog_mask.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def woman_image(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "woman.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_std_random_init(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "expected_std_random_init.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_std_init_image(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "expected_std_init_image.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_std_inpainting(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "expected_std_inpainting.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_controlnet_stack(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "expected_controlnet_stack.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_ip_adapter_woman(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "expected_image_ip_adapter_woman.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_sdxl_ip_adapter_woman(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "expected_image_sdxl_ip_adapter_woman.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_ip_adapter_controlnet(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "expected_ip_adapter_controlnet.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_sdxl_ddim_random_init(ref_path: Path) -> Image.Image:
|
|
return Image.open(fp=ref_path / "expected_cutecat_sdxl_ddim_random_init.png").convert(mode="RGB")
|
|
|
|
|
|
@pytest.fixture(scope="module", params=["canny", "depth", "lineart", "normals", "sam"])
|
|
def controlnet_data(
|
|
ref_path: Path, test_weights_path: Path, request: pytest.FixtureRequest
|
|
) -> Iterator[tuple[str, Image.Image, Image.Image, Path]]:
|
|
cn_name: str = request.param
|
|
condition_image = Image.open(ref_path / f"cutecat_guide_{cn_name}.png").convert("RGB")
|
|
expected_image = Image.open(ref_path / f"expected_controlnet_{cn_name}.png").convert("RGB")
|
|
weights_fn = {
|
|
"depth": "lllyasviel_control_v11f1p_sd15_depth",
|
|
"canny": "lllyasviel_control_v11p_sd15_canny",
|
|
"lineart": "lllyasviel_control_v11p_sd15_lineart",
|
|
"normals": "lllyasviel_control_v11p_sd15_normalbae",
|
|
"sam": "mfidabel_controlnet-segment-anything",
|
|
}
|
|
|
|
weights_path = test_weights_path / "controlnet" / f"{weights_fn[cn_name]}.safetensors"
|
|
yield (cn_name, condition_image, expected_image, weights_path)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def controlnet_data_canny(ref_path: Path, test_weights_path: Path) -> tuple[str, Image.Image, Image.Image, Path]:
|
|
cn_name = "canny"
|
|
condition_image = Image.open(ref_path / f"cutecat_guide_{cn_name}.png").convert("RGB")
|
|
expected_image = Image.open(ref_path / f"expected_controlnet_{cn_name}.png").convert("RGB")
|
|
weights_path = test_weights_path / "controlnet" / "lllyasviel_control_v11p_sd15_canny.safetensors"
|
|
return cn_name, condition_image, expected_image, weights_path
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def controlnet_data_depth(ref_path: Path, test_weights_path: Path) -> tuple[str, Image.Image, Image.Image, Path]:
|
|
cn_name = "depth"
|
|
condition_image = Image.open(ref_path / f"cutecat_guide_{cn_name}.png").convert("RGB")
|
|
expected_image = Image.open(ref_path / f"expected_controlnet_{cn_name}.png").convert("RGB")
|
|
weights_path = test_weights_path / "controlnet" / "lllyasviel_control_v11f1p_sd15_depth.safetensors"
|
|
return cn_name, condition_image, expected_image, weights_path
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def lora_data_pokemon(ref_path: Path, test_weights_path: Path) -> tuple[Image.Image, Path]:
|
|
expected_image = Image.open(ref_path / "expected_lora_pokemon.png").convert("RGB")
|
|
weights_path = test_weights_path / "loras" / "pcuenq_pokemon_lora.safetensors"
|
|
return expected_image, weights_path
|
|
|
|
|
|
@pytest.fixture
|
|
def scene_image_inpainting_refonly(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "inpainting-scene.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def mask_image_inpainting_refonly(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "inpainting-mask.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def target_image_inpainting_refonly(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "inpainting-target.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_inpainting_refonly(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "expected_inpainting_refonly.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_refonly(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "expected_refonly.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def condition_image_refonly(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "cyberpunk_guide.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_textual_inversion_random_init(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "expected_textual_inversion_random_init.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_multi_diffusion(ref_path: Path) -> Image.Image:
|
|
return Image.open(fp=ref_path / "expected_multi_diffusion.png").convert(mode="RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def text_embedding_textual_inversion(test_textual_inversion_path: Path) -> torch.Tensor:
|
|
return torch.load(test_textual_inversion_path / "gta5-artwork" / "learned_embeds.bin")["<gta5-artwork>"] # type: ignore
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def text_encoder_weights(test_weights_path: Path) -> Path:
|
|
text_encoder_weights = test_weights_path / "CLIPTextEncoderL.safetensors"
|
|
if not text_encoder_weights.is_file():
|
|
warn(f"could not find weights at {text_encoder_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return text_encoder_weights
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def lda_weights(test_weights_path: Path) -> Path:
|
|
lda_weights = test_weights_path / "lda.safetensors"
|
|
if not lda_weights.is_file():
|
|
warn(f"could not find weights at {lda_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return lda_weights
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def unet_weights_std(test_weights_path: Path) -> Path:
|
|
unet_weights_std = test_weights_path / "unet.safetensors"
|
|
if not unet_weights_std.is_file():
|
|
warn(f"could not find weights at {unet_weights_std}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return unet_weights_std
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def unet_weights_inpainting(test_weights_path: Path) -> Path:
|
|
unet_weights_inpainting = test_weights_path / "inpainting" / "unet.safetensors"
|
|
if not unet_weights_inpainting.is_file():
|
|
warn(f"could not find weights at {unet_weights_inpainting}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return unet_weights_inpainting
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def lda_ft_mse_weights(test_weights_path: Path) -> Path:
|
|
lda_weights = test_weights_path / "lda_ft_mse.safetensors"
|
|
if not lda_weights.is_file():
|
|
warn(f"could not find weights at {lda_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return lda_weights
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def ip_adapter_weights(test_weights_path: Path) -> Path:
|
|
ip_adapter_weights = test_weights_path / "ip-adapter_sd15.safetensors"
|
|
if not ip_adapter_weights.is_file():
|
|
warn(f"could not find weights at {ip_adapter_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return ip_adapter_weights
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def sdxl_ip_adapter_weights(test_weights_path: Path) -> Path:
|
|
ip_adapter_weights = test_weights_path / "ip-adapter_sdxl_vit-h.safetensors"
|
|
if not ip_adapter_weights.is_file():
|
|
warn(f"could not find weights at {ip_adapter_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return ip_adapter_weights
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def image_encoder_weights(test_weights_path: Path) -> Path:
|
|
image_encoder_weights = test_weights_path / "CLIPImageEncoderH.safetensors"
|
|
if not image_encoder_weights.is_file():
|
|
warn(f"could not find weights at {image_encoder_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return image_encoder_weights
|
|
|
|
|
|
@pytest.fixture
|
|
def sd15_std(
|
|
text_encoder_weights: Path, lda_weights: Path, unet_weights_std: Path, test_device: torch.device
|
|
) -> StableDiffusion_1:
|
|
if test_device.type == "cpu":
|
|
warn("not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
sd15 = StableDiffusion_1(device=test_device)
|
|
|
|
sd15.clip_text_encoder.load_from_safetensors(text_encoder_weights)
|
|
sd15.lda.load_from_safetensors(lda_weights)
|
|
sd15.unet.load_from_safetensors(unet_weights_std)
|
|
|
|
return sd15
|
|
|
|
|
|
@pytest.fixture
|
|
def sd15_std_float16(
|
|
text_encoder_weights: Path, lda_weights: Path, unet_weights_std: Path, test_device: torch.device
|
|
) -> StableDiffusion_1:
|
|
if test_device.type == "cpu":
|
|
warn("not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
sd15 = StableDiffusion_1(device=test_device, dtype=torch.float16)
|
|
|
|
sd15.clip_text_encoder.load_from_safetensors(text_encoder_weights)
|
|
sd15.lda.load_from_safetensors(lda_weights)
|
|
sd15.unet.load_from_safetensors(unet_weights_std)
|
|
|
|
return sd15
|
|
|
|
|
|
@pytest.fixture
|
|
def sd15_inpainting(
|
|
text_encoder_weights: Path, lda_weights: Path, unet_weights_inpainting: Path, test_device: torch.device
|
|
) -> StableDiffusion_1_Inpainting:
|
|
if test_device.type == "cpu":
|
|
warn("not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
unet = SD1UNet(in_channels=9)
|
|
sd15 = StableDiffusion_1_Inpainting(unet=unet, device=test_device)
|
|
|
|
sd15.clip_text_encoder.load_from_safetensors(text_encoder_weights)
|
|
sd15.lda.load_from_safetensors(lda_weights)
|
|
sd15.unet.load_from_safetensors(unet_weights_inpainting)
|
|
|
|
return sd15
|
|
|
|
|
|
@pytest.fixture
|
|
def sd15_inpainting_float16(
|
|
text_encoder_weights: Path, lda_weights: Path, unet_weights_inpainting: Path, test_device: torch.device
|
|
) -> StableDiffusion_1_Inpainting:
|
|
if test_device.type == "cpu":
|
|
warn("not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
unet = SD1UNet(in_channels=9)
|
|
sd15 = StableDiffusion_1_Inpainting(unet=unet, device=test_device, dtype=torch.float16)
|
|
|
|
sd15.clip_text_encoder.load_from_safetensors(text_encoder_weights)
|
|
sd15.lda.load_from_safetensors(lda_weights)
|
|
sd15.unet.load_from_safetensors(unet_weights_inpainting)
|
|
|
|
return sd15
|
|
|
|
|
|
@pytest.fixture
|
|
def sd15_ddim(
|
|
text_encoder_weights: Path, lda_weights: Path, unet_weights_std: Path, test_device: torch.device
|
|
) -> StableDiffusion_1:
|
|
if test_device.type == "cpu":
|
|
warn("not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
ddim_scheduler = DDIM(num_inference_steps=20)
|
|
sd15 = StableDiffusion_1(scheduler=ddim_scheduler, device=test_device)
|
|
|
|
sd15.clip_text_encoder.load_from_safetensors(text_encoder_weights)
|
|
sd15.lda.load_from_safetensors(lda_weights)
|
|
sd15.unet.load_from_safetensors(unet_weights_std)
|
|
|
|
return sd15
|
|
|
|
|
|
@pytest.fixture
|
|
def sd15_ddim_lda_ft_mse(
|
|
text_encoder_weights: Path, lda_ft_mse_weights: Path, unet_weights_std: Path, test_device: torch.device
|
|
) -> StableDiffusion_1:
|
|
if test_device.type == "cpu":
|
|
warn("not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
ddim_scheduler = DDIM(num_inference_steps=20)
|
|
sd15 = StableDiffusion_1(scheduler=ddim_scheduler, device=test_device)
|
|
|
|
sd15.clip_text_encoder.load_state_dict(load_from_safetensors(text_encoder_weights))
|
|
sd15.lda.load_state_dict(load_from_safetensors(lda_ft_mse_weights))
|
|
sd15.unet.load_state_dict(load_from_safetensors(unet_weights_std))
|
|
|
|
return sd15
|
|
|
|
|
|
@pytest.fixture
|
|
def sdxl_lda_weights(test_weights_path: Path) -> Path:
|
|
sdxl_lda_weights = test_weights_path / "sdxl-lda.safetensors"
|
|
if not sdxl_lda_weights.is_file():
|
|
warn(message=f"could not find weights at {sdxl_lda_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return sdxl_lda_weights
|
|
|
|
|
|
@pytest.fixture
|
|
def sdxl_unet_weights(test_weights_path: Path) -> Path:
|
|
sdxl_unet_weights = test_weights_path / "sdxl-unet.safetensors"
|
|
if not sdxl_unet_weights.is_file():
|
|
warn(message=f"could not find weights at {sdxl_unet_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return sdxl_unet_weights
|
|
|
|
|
|
@pytest.fixture
|
|
def sdxl_text_encoder_weights(test_weights_path: Path) -> Path:
|
|
sdxl_double_text_encoder_weights = test_weights_path / "DoubleCLIPTextEncoder.safetensors"
|
|
if not sdxl_double_text_encoder_weights.is_file():
|
|
warn(message=f"could not find weights at {sdxl_double_text_encoder_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return sdxl_double_text_encoder_weights
|
|
|
|
|
|
@pytest.fixture
|
|
def sdxl_ddim(
|
|
sdxl_text_encoder_weights: Path, sdxl_lda_weights: Path, sdxl_unet_weights: Path, test_device: torch.device
|
|
) -> StableDiffusion_XL:
|
|
if test_device.type == "cpu":
|
|
warn(message="not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
scheduler = DDIM(num_inference_steps=30)
|
|
sdxl = StableDiffusion_XL(scheduler=scheduler, device=test_device)
|
|
|
|
sdxl.clip_text_encoder.load_from_safetensors(tensors_path=sdxl_text_encoder_weights)
|
|
sdxl.lda.load_from_safetensors(tensors_path=sdxl_lda_weights)
|
|
sdxl.unet.load_from_safetensors(tensors_path=sdxl_unet_weights)
|
|
|
|
return sdxl
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_std_random_init(
|
|
sd15_std: StableDiffusion_1, expected_image_std_random_init: Image.Image, test_device: torch.device
|
|
):
|
|
sd15 = sd15_std
|
|
n_steps = 30
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_num_inference_steps(n_steps)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_std_random_init)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_std_random_init_float16(
|
|
sd15_std_float16: StableDiffusion_1, expected_image_std_random_init: Image.Image, test_device: torch.device
|
|
):
|
|
sd15 = sd15_std_float16
|
|
n_steps = 30
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
assert clip_text_embedding.dtype == torch.float16
|
|
|
|
sd15.set_num_inference_steps(n_steps)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device, dtype=torch.float16)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_std_random_init, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_std_init_image(
|
|
sd15_std: StableDiffusion_1,
|
|
cutecat_init: Image.Image,
|
|
expected_image_std_init_image: Image.Image,
|
|
):
|
|
sd15 = sd15_std
|
|
n_steps = 35
|
|
first_step = 5
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_num_inference_steps(n_steps)
|
|
|
|
manual_seed(2)
|
|
x = sd15.init_latents((512, 512), cutecat_init, first_step=first_step)
|
|
|
|
for step in sd15.steps[first_step:]:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_std_init_image)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_rectangular_init_latents(
|
|
sd15_std: StableDiffusion_1,
|
|
cutecat_init: Image.Image,
|
|
):
|
|
sd15 = sd15_std
|
|
|
|
# Just check latents initialization with a non-square image (and not the entire diffusion)
|
|
width, height = 512, 504
|
|
rect_init_image = cutecat_init.crop((0, 0, width, height))
|
|
x = sd15.init_latents((height, width), rect_init_image)
|
|
|
|
assert sd15.lda.decode_latents(x).size == (width, height)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_inpainting(
|
|
sd15_inpainting: StableDiffusion_1_Inpainting,
|
|
kitchen_dog: Image.Image,
|
|
kitchen_dog_mask: Image.Image,
|
|
expected_image_std_inpainting: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_inpainting
|
|
n_steps = 30
|
|
|
|
prompt = "a large white cat, detailed high-quality professional image, sitting on a chair, in a kitchen"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_num_inference_steps(n_steps)
|
|
sd15.set_inpainting_conditions(kitchen_dog, kitchen_dog_mask)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
# PSNR and SSIM values are large because with float32 we get large differences even v.s. ourselves.
|
|
ensure_similar_images(predicted_image, expected_image_std_inpainting, min_psnr=25, min_ssim=0.95)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_inpainting_float16(
|
|
sd15_inpainting_float16: StableDiffusion_1_Inpainting,
|
|
kitchen_dog: Image.Image,
|
|
kitchen_dog_mask: Image.Image,
|
|
expected_image_std_inpainting: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_inpainting_float16
|
|
n_steps = 30
|
|
|
|
prompt = "a large white cat, detailed high-quality professional image, sitting on a chair, in a kitchen"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
assert clip_text_embedding.dtype == torch.float16
|
|
|
|
sd15.set_num_inference_steps(n_steps)
|
|
sd15.set_inpainting_conditions(kitchen_dog, kitchen_dog_mask)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device, dtype=torch.float16)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
# PSNR and SSIM values are large because float16 is even worse than float32.
|
|
ensure_similar_images(predicted_image, expected_image_std_inpainting, min_psnr=20, min_ssim=0.92)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_controlnet(
|
|
sd15_std: StableDiffusion_1,
|
|
controlnet_data: tuple[str, Image.Image, Image.Image, Path],
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_std
|
|
n_steps = 30
|
|
|
|
cn_name, condition_image, expected_image, cn_weights_path = controlnet_data
|
|
|
|
if not cn_weights_path.is_file():
|
|
warn(f"could not find weights at {cn_weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_num_inference_steps(n_steps)
|
|
|
|
controlnet = SD1ControlnetAdapter(
|
|
sd15.unet, name=cn_name, scale=0.5, weights=load_from_safetensors(cn_weights_path)
|
|
).inject()
|
|
|
|
cn_condition = image_to_tensor(condition_image.convert("RGB"), device=test_device)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
controlnet.set_controlnet_condition(cn_condition)
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_controlnet_structural_copy(
|
|
sd15_std: StableDiffusion_1,
|
|
controlnet_data_canny: tuple[str, Image.Image, Image.Image, Path],
|
|
test_device: torch.device,
|
|
):
|
|
sd15_base = sd15_std
|
|
sd15 = sd15_base.structural_copy()
|
|
n_steps = 30
|
|
|
|
cn_name, condition_image, expected_image, cn_weights_path = controlnet_data_canny
|
|
|
|
if not cn_weights_path.is_file():
|
|
warn(f"could not find weights at {cn_weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_num_inference_steps(n_steps)
|
|
|
|
controlnet = SD1ControlnetAdapter(
|
|
sd15.unet, name=cn_name, scale=0.5, weights=load_from_safetensors(cn_weights_path)
|
|
).inject()
|
|
|
|
cn_condition = image_to_tensor(condition_image.convert("RGB"), device=test_device)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
controlnet.set_controlnet_condition(cn_condition)
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_controlnet_float16(
|
|
sd15_std_float16: StableDiffusion_1,
|
|
controlnet_data_canny: tuple[str, Image.Image, Image.Image, Path],
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_std_float16
|
|
n_steps = 30
|
|
|
|
cn_name, condition_image, expected_image, cn_weights_path = controlnet_data_canny
|
|
|
|
if not cn_weights_path.is_file():
|
|
warn(f"could not find weights at {cn_weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_num_inference_steps(n_steps)
|
|
|
|
controlnet = SD1ControlnetAdapter(
|
|
sd15.unet, name=cn_name, scale=0.5, weights=load_from_safetensors(cn_weights_path)
|
|
).inject()
|
|
|
|
cn_condition = image_to_tensor(condition_image.convert("RGB"), device=test_device, dtype=torch.float16)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device, dtype=torch.float16)
|
|
|
|
for step in sd15.steps:
|
|
controlnet.set_controlnet_condition(cn_condition)
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_controlnet_stack(
|
|
sd15_std: StableDiffusion_1,
|
|
controlnet_data_depth: tuple[str, Image.Image, Image.Image, Path],
|
|
controlnet_data_canny: tuple[str, Image.Image, Image.Image, Path],
|
|
expected_image_controlnet_stack: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_std
|
|
n_steps = 30
|
|
|
|
_, depth_condition_image, _, depth_cn_weights_path = controlnet_data_depth
|
|
_, canny_condition_image, _, canny_cn_weights_path = controlnet_data_canny
|
|
|
|
if not canny_cn_weights_path.is_file():
|
|
warn(f"could not find weights at {canny_cn_weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
if not depth_cn_weights_path.is_file():
|
|
warn(f"could not find weights at {depth_cn_weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_num_inference_steps(n_steps)
|
|
|
|
depth_controlnet = SD1ControlnetAdapter(
|
|
sd15.unet, name="depth", scale=0.3, weights=load_from_safetensors(depth_cn_weights_path)
|
|
).inject()
|
|
canny_controlnet = SD1ControlnetAdapter(
|
|
sd15.unet, name="canny", scale=0.7, weights=load_from_safetensors(canny_cn_weights_path)
|
|
).inject()
|
|
|
|
depth_cn_condition = image_to_tensor(depth_condition_image.convert("RGB"), device=test_device)
|
|
canny_cn_condition = image_to_tensor(canny_condition_image.convert("RGB"), device=test_device)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
depth_controlnet.set_controlnet_condition(depth_cn_condition)
|
|
canny_controlnet.set_controlnet_condition(canny_cn_condition)
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_controlnet_stack, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_lora(
|
|
sd15_std: StableDiffusion_1,
|
|
lora_data_pokemon: tuple[Image.Image, Path],
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_std
|
|
n_steps = 30
|
|
|
|
expected_image, lora_weights_path = lora_data_pokemon
|
|
|
|
if not lora_weights_path.is_file():
|
|
warn(f"could not find weights at {lora_weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
prompt = "a cute cat"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(prompt)
|
|
|
|
sd15.set_num_inference_steps(n_steps)
|
|
|
|
SD1LoraAdapter.from_safetensors(target=sd15, checkpoint_path=lora_weights_path, scale=1.0).inject()
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_lora_float16(
|
|
sd15_std_float16: StableDiffusion_1,
|
|
lora_data_pokemon: tuple[Image.Image, Path],
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_std_float16
|
|
n_steps = 30
|
|
|
|
expected_image, lora_weights_path = lora_data_pokemon
|
|
|
|
if not lora_weights_path.is_file():
|
|
warn(f"could not find weights at {lora_weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
prompt = "a cute cat"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(prompt)
|
|
|
|
sd15.set_num_inference_steps(n_steps)
|
|
|
|
SD1LoraAdapter.from_safetensors(target=sd15, checkpoint_path=lora_weights_path, scale=1.0).inject()
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device, dtype=torch.float16)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=33, min_ssim=0.98)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_lora_twice(
|
|
sd15_std: StableDiffusion_1,
|
|
lora_data_pokemon: tuple[Image.Image, Path],
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_std
|
|
n_steps = 30
|
|
|
|
expected_image, lora_weights_path = lora_data_pokemon
|
|
|
|
if not lora_weights_path.is_file():
|
|
warn(f"could not find weights at {lora_weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
prompt = "a cute cat"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(prompt)
|
|
|
|
sd15.set_num_inference_steps(n_steps)
|
|
|
|
# The same LoRA is used twice which is not a common use case: this is purely for testing purpose
|
|
SD1LoraAdapter.from_safetensors(target=sd15, checkpoint_path=lora_weights_path, scale=0.4).inject()
|
|
SD1LoraAdapter.from_safetensors(target=sd15, checkpoint_path=lora_weights_path, scale=0.6).inject()
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_refonly(
|
|
sd15_ddim: StableDiffusion_1,
|
|
condition_image_refonly: Image.Image,
|
|
expected_image_refonly: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_ddim
|
|
|
|
prompt = "Chicken"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(prompt)
|
|
|
|
refonly_adapter = ReferenceOnlyControlAdapter(sd15.unet).inject()
|
|
|
|
guide = sd15.lda.encode_image(condition_image_refonly)
|
|
guide = torch.cat((guide, guide))
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
noise = torch.randn(2, 4, 64, 64, device=test_device)
|
|
noised_guide = sd15.scheduler.add_noise(guide, noise, step)
|
|
refonly_adapter.set_controlnet_condition(noised_guide)
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
torch.randn(2, 4, 64, 64, device=test_device) # for SD Web UI reproductibility only
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_refonly, min_psnr=35, min_ssim=0.99)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_inpainting_refonly(
|
|
sd15_inpainting: StableDiffusion_1_Inpainting,
|
|
scene_image_inpainting_refonly: Image.Image,
|
|
target_image_inpainting_refonly: Image.Image,
|
|
mask_image_inpainting_refonly: Image.Image,
|
|
expected_image_inpainting_refonly: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_inpainting
|
|
n_steps = 30
|
|
|
|
prompt = "" # unconditional
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(prompt)
|
|
|
|
refonly_adapter = ReferenceOnlyControlAdapter(sd15.unet).inject()
|
|
|
|
sd15.set_num_inference_steps(n_steps)
|
|
sd15.set_inpainting_conditions(target_image_inpainting_refonly, mask_image_inpainting_refonly)
|
|
|
|
guide = sd15.lda.encode_image(scene_image_inpainting_refonly)
|
|
guide = torch.cat((guide, guide))
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
noise = torch.randn_like(guide)
|
|
noised_guide = sd15.scheduler.add_noise(guide, noise, step)
|
|
# See https://github.com/Mikubill/sd-webui-controlnet/pull/1275 ("1.1.170 reference-only begin to support
|
|
# inpaint variation models")
|
|
noised_guide = torch.cat([noised_guide, torch.zeros_like(noised_guide)[:, 0:1, :, :], guide], dim=1)
|
|
|
|
refonly_adapter.set_controlnet_condition(noised_guide)
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_inpainting_refonly, min_psnr=35, min_ssim=0.99)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_textual_inversion_random_init(
|
|
sd15_std: StableDiffusion_1,
|
|
expected_image_textual_inversion_random_init: Image.Image,
|
|
text_embedding_textual_inversion: torch.Tensor,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_std
|
|
|
|
conceptExtender = ConceptExtender(sd15.clip_text_encoder)
|
|
conceptExtender.add_concept("<gta5-artwork>", text_embedding_textual_inversion)
|
|
conceptExtender.inject()
|
|
|
|
n_steps = 30
|
|
|
|
prompt = "a cute cat on a <gta5-artwork>"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(prompt)
|
|
|
|
sd15.set_num_inference_steps(n_steps)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_textual_inversion_random_init, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_ip_adapter(
|
|
sd15_ddim_lda_ft_mse: StableDiffusion_1,
|
|
ip_adapter_weights: Path,
|
|
image_encoder_weights: Path,
|
|
woman_image: Image.Image,
|
|
expected_image_ip_adapter_woman: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_ddim_lda_ft_mse.to(dtype=torch.float16)
|
|
n_steps = 50
|
|
|
|
# See tencent-ailab/IP-Adapter best practices section:
|
|
#
|
|
# If you only use the image prompt, you can set the scale=1.0 and text_prompt="" (or some generic text
|
|
# prompts, e.g. "best quality", you can also use any negative text prompt).
|
|
#
|
|
# The prompts below are the ones used by default by IPAdapter's generate method if none are specified
|
|
prompt = "best quality, high quality"
|
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
|
|
|
ip_adapter = SD1IPAdapter(target=sd15.unet, weights=load_from_safetensors(ip_adapter_weights))
|
|
ip_adapter.clip_image_encoder.load_from_safetensors(image_encoder_weights)
|
|
ip_adapter.inject()
|
|
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
clip_image_embedding = ip_adapter.compute_clip_image_embedding(ip_adapter.preprocess_image(woman_image))
|
|
|
|
negative_text_embedding, conditional_text_embedding = clip_text_embedding.chunk(2)
|
|
negative_image_embedding, conditional_image_embedding = clip_image_embedding.chunk(2)
|
|
|
|
clip_text_embedding = torch.cat(
|
|
(
|
|
torch.cat([negative_text_embedding, negative_image_embedding], dim=1),
|
|
torch.cat([conditional_text_embedding, conditional_image_embedding], dim=1),
|
|
)
|
|
)
|
|
|
|
sd15.set_num_inference_steps(n_steps)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device, dtype=torch.float16)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_ip_adapter_woman)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_sdxl_ip_adapter(
|
|
sdxl_ddim: StableDiffusion_XL,
|
|
sdxl_ip_adapter_weights: Path,
|
|
image_encoder_weights: Path,
|
|
woman_image: Image.Image,
|
|
expected_image_sdxl_ip_adapter_woman: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sdxl = sdxl_ddim.to(dtype=torch.float16)
|
|
n_steps = 30
|
|
|
|
prompt = "best quality, high quality"
|
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
|
|
|
ip_adapter = SDXLIPAdapter(target=sdxl.unet, weights=load_from_safetensors(sdxl_ip_adapter_weights))
|
|
ip_adapter.clip_image_encoder.load_from_safetensors(image_encoder_weights)
|
|
ip_adapter.inject()
|
|
|
|
with torch.no_grad():
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt, negative_text=negative_prompt
|
|
)
|
|
clip_image_embedding = ip_adapter.compute_clip_image_embedding(ip_adapter.preprocess_image(woman_image))
|
|
|
|
negative_text_embedding, conditional_text_embedding = clip_text_embedding.chunk(2)
|
|
negative_image_embedding, conditional_image_embedding = clip_image_embedding.chunk(2)
|
|
|
|
clip_text_embedding = torch.cat(
|
|
(
|
|
torch.cat([negative_text_embedding, negative_image_embedding], dim=1),
|
|
torch.cat([conditional_text_embedding, conditional_image_embedding], dim=1),
|
|
)
|
|
)
|
|
time_ids = sdxl.default_time_ids
|
|
sdxl.set_num_inference_steps(n_steps)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 128, 128, device=test_device, dtype=torch.float16)
|
|
|
|
with torch.no_grad():
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
condition_scale=5,
|
|
)
|
|
# See https://huggingface.co/madebyollin/sdxl-vae-fp16-fix: "SDXL-VAE generates NaNs in fp16 because the
|
|
# internal activation values are too big"
|
|
sdxl.lda.to(dtype=torch.float32)
|
|
predicted_image = sdxl.lda.decode_latents(x.to(dtype=torch.float32))
|
|
|
|
ensure_similar_images(predicted_image, expected_image_sdxl_ip_adapter_woman)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_diffusion_ip_adapter_controlnet(
|
|
sd15_ddim: StableDiffusion_1,
|
|
ip_adapter_weights: Path,
|
|
image_encoder_weights: Path,
|
|
lora_data_pokemon: tuple[Image.Image, Path],
|
|
controlnet_data_depth: tuple[str, Image.Image, Image.Image, Path],
|
|
expected_image_ip_adapter_controlnet: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_ddim.to(dtype=torch.float16)
|
|
n_steps = 50
|
|
input_image, _ = lora_data_pokemon # use the Pokemon LoRA output as input
|
|
_, depth_condition_image, _, depth_cn_weights_path = controlnet_data_depth
|
|
|
|
prompt = "best quality, high quality"
|
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
|
|
|
ip_adapter = SD1IPAdapter(target=sd15.unet, weights=load_from_safetensors(ip_adapter_weights))
|
|
ip_adapter.clip_image_encoder.load_from_safetensors(image_encoder_weights)
|
|
ip_adapter.inject()
|
|
|
|
depth_controlnet = SD1ControlnetAdapter(
|
|
sd15.unet,
|
|
name="depth",
|
|
scale=1.0,
|
|
weights=load_from_safetensors(depth_cn_weights_path),
|
|
).inject()
|
|
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
clip_image_embedding = ip_adapter.compute_clip_image_embedding(ip_adapter.preprocess_image(input_image))
|
|
|
|
negative_text_embedding, conditional_text_embedding = clip_text_embedding.chunk(2)
|
|
negative_image_embedding, conditional_image_embedding = clip_image_embedding.chunk(2)
|
|
|
|
clip_text_embedding = torch.cat(
|
|
(
|
|
torch.cat([negative_text_embedding, negative_image_embedding], dim=1),
|
|
torch.cat([conditional_text_embedding, conditional_image_embedding], dim=1),
|
|
)
|
|
)
|
|
|
|
depth_cn_condition = image_to_tensor(
|
|
depth_condition_image.convert("RGB"),
|
|
device=test_device,
|
|
dtype=torch.float16,
|
|
)
|
|
|
|
sd15.set_num_inference_steps(n_steps)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device, dtype=torch.float16)
|
|
|
|
for step in sd15.steps:
|
|
depth_controlnet.set_controlnet_condition(depth_cn_condition)
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_ip_adapter_controlnet)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_sdxl_random_init(
|
|
sdxl_ddim: StableDiffusion_XL, expected_sdxl_ddim_random_init: Image.Image, test_device: torch.device
|
|
) -> None:
|
|
sdxl = sdxl_ddim
|
|
expected_image = expected_sdxl_ddim_random_init
|
|
n_steps = 30
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt, negative_text=negative_prompt
|
|
)
|
|
time_ids = sdxl.default_time_ids
|
|
|
|
sdxl.set_num_inference_steps(num_inference_steps=n_steps)
|
|
|
|
manual_seed(seed=2)
|
|
x = torch.randn(1, 4, 128, 128, device=test_device)
|
|
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
condition_scale=5,
|
|
)
|
|
predicted_image = sdxl.lda.decode_latents(x=x)
|
|
|
|
ensure_similar_images(img_1=predicted_image, img_2=expected_image, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_multi_diffusion(sd15_ddim: StableDiffusion_1, expected_multi_diffusion: Image.Image) -> None:
|
|
manual_seed(seed=2)
|
|
sd = sd15_ddim
|
|
multi_diffusion = SD1MultiDiffusion(sd)
|
|
clip_text_embedding = sd.compute_clip_text_embedding(text="a panorama of a mountain")
|
|
target_1 = DiffusionTarget(
|
|
size=(64, 64),
|
|
offset=(0, 0),
|
|
clip_text_embedding=clip_text_embedding,
|
|
start_step=0,
|
|
)
|
|
target_2 = DiffusionTarget(
|
|
size=(64, 64),
|
|
offset=(0, 16),
|
|
clip_text_embedding=clip_text_embedding,
|
|
start_step=0,
|
|
)
|
|
noise = torch.randn(1, 4, 64, 80, device=sd.device, dtype=sd.dtype)
|
|
x = noise
|
|
for step in sd.steps:
|
|
x = multi_diffusion(
|
|
x,
|
|
noise=noise,
|
|
step=step,
|
|
targets=[target_1, target_2],
|
|
)
|
|
result = sd.lda.decode_latents(x=x)
|
|
ensure_similar_images(img_1=result, img_2=expected_multi_diffusion, min_psnr=35, min_ssim=0.98)
|