mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-14 00:58:13 +00:00
117 lines
2.9 KiB
Python
117 lines
2.9 KiB
Python
import torch
|
|
import refiners.fluxion.layers as fl
|
|
|
|
|
|
def test_chain_remove_replace():
|
|
chain = fl.Chain(
|
|
fl.Linear(1, 1),
|
|
fl.Linear(1, 1),
|
|
fl.Chain(
|
|
fl.Linear(1, 1),
|
|
fl.Linear(1, 1),
|
|
fl.Chain(fl.Linear(1, 1), fl.Linear(1, 1)),
|
|
),
|
|
fl.Conv2d(1, 1, 1),
|
|
)
|
|
assert len(chain) == 4
|
|
assert len(chain.Chain) == 3
|
|
|
|
chain.remove(chain[-1])
|
|
assert len(chain) == 3
|
|
assert len(chain.Chain) == 3
|
|
|
|
assert isinstance(chain.Chain.Chain[1], fl.Linear)
|
|
chain.Chain.Chain.replace(chain.Chain.Chain[1], fl.Conv2d(1, 1, 1))
|
|
assert len(chain) == 3
|
|
assert len(chain.Chain) == 3
|
|
assert isinstance(chain.Chain.Chain[1], fl.Conv2d)
|
|
|
|
|
|
def test_chain_structural_copy():
|
|
m = fl.Chain(
|
|
fl.Sum(
|
|
fl.Linear(in_features=4, out_features=8),
|
|
fl.Linear(in_features=4, out_features=8),
|
|
),
|
|
fl.Linear(in_features=8, out_features=12),
|
|
)
|
|
|
|
x = torch.randn(7, 4)
|
|
y = m(x)
|
|
assert y.shape == (7, 12)
|
|
|
|
m2 = m.structural_copy()
|
|
|
|
assert m.Linear == m2.Linear
|
|
assert m.Sum.Linear_1 == m2.Sum.Linear_1
|
|
assert m.Sum.Linear_2 == m2.Sum.Linear_2
|
|
|
|
assert m.Sum != m2.Sum
|
|
assert m != m2
|
|
|
|
assert m.Sum.parent == m
|
|
assert m2.Sum.parent == m2
|
|
|
|
y2 = m2(x)
|
|
assert y2.shape == (7, 12)
|
|
torch.equal(y2, y)
|
|
|
|
|
|
def test_chain_find():
|
|
chain = fl.Chain(
|
|
fl.Linear(1, 1),
|
|
)
|
|
|
|
assert isinstance(chain.find(fl.Linear), fl.Linear)
|
|
assert chain.find(fl.Conv2d) is None
|
|
|
|
|
|
def test_chain_slice() -> None:
|
|
chain = fl.Chain(
|
|
fl.Linear(in_features=1, out_features=1),
|
|
fl.Linear(in_features=1, out_features=1),
|
|
fl.Linear(in_features=1, out_features=1),
|
|
fl.Chain(
|
|
fl.Linear(in_features=1, out_features=1),
|
|
fl.Linear(in_features=1, out_features=1),
|
|
),
|
|
fl.Linear(in_features=1, out_features=1),
|
|
)
|
|
|
|
x = torch.randn(1, 1)
|
|
sliced_chain = chain[1:4]
|
|
|
|
assert len(chain) == 5
|
|
assert len(sliced_chain) == 3
|
|
assert chain[:-1](x).shape == (1, 1)
|
|
|
|
|
|
def test_chain_walk_stop_iteration() -> None:
|
|
chain = fl.Chain(
|
|
fl.Sum(
|
|
fl.Chain(fl.Linear(in_features=1, out_features=1)),
|
|
fl.Linear(in_features=1, out_features=1),
|
|
),
|
|
fl.Chain(),
|
|
fl.Linear(in_features=1, out_features=1),
|
|
)
|
|
|
|
def predicate(m: fl.Module, p: fl.Chain) -> bool:
|
|
if isinstance(m, fl.Sum):
|
|
raise StopIteration
|
|
return isinstance(m, fl.Linear)
|
|
|
|
assert len(list(chain.walk(fl.Linear))) == 3
|
|
assert len(list(chain.walk(predicate))) == 1
|
|
|
|
|
|
def test_chain_layers() -> None:
|
|
chain = fl.Chain(
|
|
fl.Chain(fl.Chain(fl.Chain())),
|
|
fl.Chain(),
|
|
fl.Linear(in_features=1, out_features=1),
|
|
)
|
|
|
|
assert len(list(chain.layers(fl.Chain))) == 2
|
|
assert len(list(chain.layers(fl.Chain, recurse=True))) == 4
|