mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-14 09:08:14 +00:00
471ef91d1c
PyTorch chose to make it Any because they expect its users' code to be "highly dynamic": https://github.com/pytorch/pytorch/pull/104321 It is not the case for us, in Refiners having untyped code goes contrary to one of our core principles. Note that there is currently an open PR in PyTorch to return `Module | Tensor`, but in practice this is not always correct either: https://github.com/pytorch/pytorch/pull/115074 I also moved Residuals-related code from SD1 to latent_diffusion because SDXL should not depend on SD1.
234 lines
8.3 KiB
Python
234 lines
8.3 KiB
Python
# pyright: reportPrivateUsage=false
|
|
import argparse
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from diffusers import ControlNetModel # type: ignore
|
|
from torch import nn
|
|
|
|
from refiners.fluxion.model_converter import ModelConverter
|
|
from refiners.fluxion.utils import no_grad, save_to_safetensors
|
|
from refiners.foundationals.latent_diffusion import (
|
|
DPMSolver,
|
|
SD1ControlnetAdapter,
|
|
SD1UNet,
|
|
)
|
|
|
|
|
|
class Args(argparse.Namespace):
|
|
source_path: str
|
|
output_path: str | None
|
|
|
|
|
|
@no_grad()
|
|
def convert(args: Args) -> dict[str, torch.Tensor]:
|
|
# low_cpu_mem_usage=False stops some annoying console messages us to `pip install accelerate`
|
|
controlnet_src: nn.Module = ControlNetModel.from_pretrained( # type: ignore
|
|
pretrained_model_name_or_path=args.source_path,
|
|
low_cpu_mem_usage=False,
|
|
)
|
|
unet = SD1UNet(in_channels=4)
|
|
adapter = SD1ControlnetAdapter(unet, name="mycn").inject()
|
|
controlnet = adapter.controlnet
|
|
|
|
condition = torch.randn(1, 3, 512, 512)
|
|
adapter.set_controlnet_condition(condition=condition)
|
|
|
|
clip_text_embedding = torch.rand(1, 77, 768)
|
|
unet.set_clip_text_embedding(clip_text_embedding=clip_text_embedding)
|
|
|
|
solver = DPMSolver(num_inference_steps=10)
|
|
timestep = solver.timesteps[0].unsqueeze(dim=0)
|
|
unet.set_timestep(timestep=timestep.unsqueeze(dim=0))
|
|
|
|
x = torch.randn(1, 4, 64, 64)
|
|
|
|
# We need the hack below because our implementation is not strictly equivalent
|
|
# to diffusers in order, since we compute the residuals inline instead of
|
|
# in a separate step.
|
|
|
|
converter = ModelConverter(
|
|
source_model=controlnet_src, target_model=controlnet, skip_output_check=True, verbose=False
|
|
)
|
|
|
|
source_order = converter._trace_module_execution_order(
|
|
module=controlnet_src, args=(x, timestep, clip_text_embedding, condition), keys_to_skip=[]
|
|
)
|
|
target_order = converter._trace_module_execution_order(module=controlnet, args=(x,), keys_to_skip=[])
|
|
|
|
broken_k = (nn.Conv2d, (torch.Size([320, 320, 1, 1]), torch.Size([320])))
|
|
|
|
expected_source_order = [
|
|
"down_blocks.0.attentions.0.proj_in",
|
|
"down_blocks.0.attentions.0.proj_out",
|
|
"down_blocks.0.attentions.1.proj_in",
|
|
"down_blocks.0.attentions.1.proj_out",
|
|
"controlnet_down_blocks.0",
|
|
"controlnet_down_blocks.1",
|
|
"controlnet_down_blocks.2",
|
|
"controlnet_down_blocks.3",
|
|
]
|
|
|
|
expected_target_order = [
|
|
"DownBlocks.Chain_1.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_2.CLIPLCrossAttention.Chain_1.Conv2d",
|
|
"DownBlocks.Chain_2.CLIPLCrossAttention.Chain_3.Conv2d",
|
|
"DownBlocks.Chain_2.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_3.CLIPLCrossAttention.Chain_1.Conv2d",
|
|
"DownBlocks.Chain_3.CLIPLCrossAttention.Chain_3.Conv2d",
|
|
"DownBlocks.Chain_3.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_4.Passthrough.Conv2d",
|
|
]
|
|
|
|
fixed_source_order = [
|
|
"controlnet_down_blocks.0",
|
|
"down_blocks.0.attentions.0.proj_in",
|
|
"down_blocks.0.attentions.0.proj_out",
|
|
"controlnet_down_blocks.1",
|
|
"down_blocks.0.attentions.1.proj_in",
|
|
"down_blocks.0.attentions.1.proj_out",
|
|
"controlnet_down_blocks.2",
|
|
"controlnet_down_blocks.3",
|
|
]
|
|
|
|
assert source_order[broken_k] == expected_source_order
|
|
assert target_order[broken_k] == expected_target_order
|
|
source_order[broken_k] = fixed_source_order
|
|
|
|
broken_k = (nn.Conv2d, (torch.Size([640, 640, 1, 1]), torch.Size([640])))
|
|
|
|
expected_source_order = [
|
|
"down_blocks.1.attentions.0.proj_in",
|
|
"down_blocks.1.attentions.0.proj_out",
|
|
"down_blocks.1.attentions.1.proj_in",
|
|
"down_blocks.1.attentions.1.proj_out",
|
|
"controlnet_down_blocks.4",
|
|
"controlnet_down_blocks.5",
|
|
"controlnet_down_blocks.6",
|
|
]
|
|
|
|
expected_target_order = [
|
|
"DownBlocks.Chain_5.CLIPLCrossAttention.Chain_1.Conv2d",
|
|
"DownBlocks.Chain_5.CLIPLCrossAttention.Chain_3.Conv2d",
|
|
"DownBlocks.Chain_5.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_6.CLIPLCrossAttention.Chain_1.Conv2d",
|
|
"DownBlocks.Chain_6.CLIPLCrossAttention.Chain_3.Conv2d",
|
|
"DownBlocks.Chain_6.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_7.Passthrough.Conv2d",
|
|
]
|
|
|
|
fixed_source_order = [
|
|
"down_blocks.1.attentions.0.proj_in",
|
|
"down_blocks.1.attentions.0.proj_out",
|
|
"controlnet_down_blocks.4",
|
|
"down_blocks.1.attentions.1.proj_in",
|
|
"down_blocks.1.attentions.1.proj_out",
|
|
"controlnet_down_blocks.5",
|
|
"controlnet_down_blocks.6",
|
|
]
|
|
|
|
assert source_order[broken_k] == expected_source_order
|
|
assert target_order[broken_k] == expected_target_order
|
|
source_order[broken_k] = fixed_source_order
|
|
|
|
broken_k = (nn.Conv2d, (torch.Size([1280, 1280, 1, 1]), torch.Size([1280])))
|
|
|
|
expected_source_order = [
|
|
"down_blocks.2.attentions.0.proj_in",
|
|
"down_blocks.2.attentions.0.proj_out",
|
|
"down_blocks.2.attentions.1.proj_in",
|
|
"down_blocks.2.attentions.1.proj_out",
|
|
"mid_block.attentions.0.proj_in",
|
|
"mid_block.attentions.0.proj_out",
|
|
"controlnet_down_blocks.7",
|
|
"controlnet_down_blocks.8",
|
|
"controlnet_down_blocks.9",
|
|
"controlnet_down_blocks.10",
|
|
"controlnet_down_blocks.11",
|
|
"controlnet_mid_block",
|
|
]
|
|
|
|
expected_target_order = [
|
|
"DownBlocks.Chain_8.CLIPLCrossAttention.Chain_1.Conv2d",
|
|
"DownBlocks.Chain_8.CLIPLCrossAttention.Chain_3.Conv2d",
|
|
"DownBlocks.Chain_8.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_9.CLIPLCrossAttention.Chain_1.Conv2d",
|
|
"DownBlocks.Chain_9.CLIPLCrossAttention.Chain_3.Conv2d",
|
|
"DownBlocks.Chain_9.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_10.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_11.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_12.Passthrough.Conv2d",
|
|
"MiddleBlock.CLIPLCrossAttention.Chain_1.Conv2d",
|
|
"MiddleBlock.CLIPLCrossAttention.Chain_3.Conv2d",
|
|
"MiddleBlock.Passthrough.Conv2d",
|
|
]
|
|
|
|
fixed_source_order = [
|
|
"down_blocks.2.attentions.0.proj_in",
|
|
"down_blocks.2.attentions.0.proj_out",
|
|
"controlnet_down_blocks.7",
|
|
"down_blocks.2.attentions.1.proj_in",
|
|
"down_blocks.2.attentions.1.proj_out",
|
|
"controlnet_down_blocks.8",
|
|
"controlnet_down_blocks.9",
|
|
"controlnet_down_blocks.10",
|
|
"controlnet_down_blocks.11",
|
|
"mid_block.attentions.0.proj_in",
|
|
"mid_block.attentions.0.proj_out",
|
|
"controlnet_mid_block",
|
|
]
|
|
|
|
assert source_order[broken_k] == expected_source_order
|
|
assert target_order[broken_k] == expected_target_order
|
|
source_order[broken_k] = fixed_source_order
|
|
|
|
assert converter._assert_shapes_aligned(source_order=source_order, target_order=target_order), "Shapes not aligned"
|
|
|
|
mapping: dict[str, str] = {}
|
|
for model_type_shape in source_order:
|
|
source_keys = source_order[model_type_shape]
|
|
target_keys = target_order[model_type_shape]
|
|
mapping.update(zip(target_keys, source_keys))
|
|
|
|
state_dict = converter._convert_state_dict(
|
|
source_state_dict=controlnet_src.state_dict(),
|
|
target_state_dict=controlnet.state_dict(),
|
|
state_dict_mapping=mapping,
|
|
)
|
|
|
|
return {k: v.half() for k, v in state_dict.items()}
|
|
|
|
|
|
def main() -> None:
|
|
parser = argparse.ArgumentParser(description="Convert a diffusers ControlNet model to a Refiners ControlNet model")
|
|
parser.add_argument(
|
|
"--from",
|
|
type=str,
|
|
dest="source_path",
|
|
default="lllyasviel/sd-controlnet-depth",
|
|
help=(
|
|
"Can be a path to a .bin, a .safetensors file, or a model identifier from Hugging Face Hub. Defaults to"
|
|
" lllyasviel/sd-controlnet-depth"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--to",
|
|
type=str,
|
|
dest="output_path",
|
|
required=False,
|
|
default=None,
|
|
help=(
|
|
"Output path (.safetensors) for converted model. If not provided, the output path will be the same as the"
|
|
" source path."
|
|
),
|
|
)
|
|
args = parser.parse_args(namespace=Args())
|
|
if args.output_path is None:
|
|
args.output_path = f"{Path(args.source_path).stem}-controlnet.safetensors"
|
|
state_dict = convert(args=args)
|
|
save_to_safetensors(path=args.output_path, tensors=state_dict)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|