mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-14 00:58:13 +00:00
192 lines
6.6 KiB
Python
192 lines
6.6 KiB
Python
import gc
|
|
from pathlib import Path
|
|
from warnings import warn
|
|
|
|
import pytest
|
|
import torch
|
|
from PIL import Image
|
|
from tests.utils import ensure_similar_images
|
|
|
|
from refiners.fluxion.utils import load_from_safetensors, manual_seed, no_grad
|
|
from refiners.foundationals.latent_diffusion.lora import SDLoraManager
|
|
from refiners.foundationals.latent_diffusion.solvers import LCMSolver
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.lcm import SDXLLcmAdapter
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.lcm_lora import add_lcm_lora
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.model import StableDiffusion_XL
|
|
|
|
|
|
def _img_open(path: Path) -> Image.Image:
|
|
return Image.open(path) # type: ignore
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def ensure_gc():
|
|
# Avoid GPU OOMs
|
|
# See https://github.com/pytest-dev/pytest/discussions/8153#discussioncomment-214812
|
|
gc.collect()
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def ref_path(test_e2e_path: Path) -> Path:
|
|
return test_e2e_path / "test_lcm_ref"
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_lcm_base(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_lcm_base.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_lcm_lora_1_0(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_lcm_lora_1_0.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_lcm_lora_1_2(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_lcm_lora_1_2.png").convert("RGB")
|
|
|
|
|
|
@no_grad()
|
|
def test_lcm_base(
|
|
test_device: torch.device,
|
|
sdxl_autoencoder_fp16fix_weights_path: Path,
|
|
sdxl_unet_lcm_weights_path: Path,
|
|
sdxl_text_encoder_weights_path: Path,
|
|
expected_lcm_base: Image.Image,
|
|
) -> None:
|
|
if test_device.type == "cpu":
|
|
warn(message="not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
solver = LCMSolver(num_inference_steps=4)
|
|
sdxl = StableDiffusion_XL(device=test_device, dtype=torch.float16, solver=solver)
|
|
sdxl.classifier_free_guidance = False
|
|
|
|
# With standard LCM the condition scale is passed to the adapter,
|
|
# not in the diffusion loop.
|
|
SDXLLcmAdapter(sdxl.unet, condition_scale=8.0).inject()
|
|
|
|
sdxl.clip_text_encoder.load_from_safetensors(sdxl_text_encoder_weights_path)
|
|
sdxl.lda.load_from_safetensors(sdxl_autoencoder_fp16fix_weights_path)
|
|
sdxl.unet.load_from_safetensors(sdxl_unet_lcm_weights_path)
|
|
|
|
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
|
|
expected_image = expected_lcm_base
|
|
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(prompt)
|
|
time_ids = sdxl.default_time_ids
|
|
|
|
manual_seed(2)
|
|
x = sdxl.init_latents((1024, 1024)).to(sdxl.device, sdxl.dtype)
|
|
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
)
|
|
predicted_image = sdxl.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
@pytest.mark.parametrize("condition_scale", [1.0, 1.2])
|
|
def test_lcm_lora_with_guidance(
|
|
test_device: torch.device,
|
|
sdxl_autoencoder_fp16fix_weights_path: Path,
|
|
sdxl_unet_weights_path: Path,
|
|
sdxl_text_encoder_weights_path: Path,
|
|
lora_sdxl_lcm_weights_path: Path,
|
|
expected_lcm_lora_1_0: Image.Image,
|
|
expected_lcm_lora_1_2: Image.Image,
|
|
condition_scale: float,
|
|
) -> None:
|
|
if test_device.type == "cpu":
|
|
warn(message="not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
solver = LCMSolver(num_inference_steps=4)
|
|
sdxl = StableDiffusion_XL(device=test_device, dtype=torch.float16, solver=solver)
|
|
|
|
sdxl.clip_text_encoder.load_from_safetensors(sdxl_text_encoder_weights_path)
|
|
sdxl.lda.load_from_safetensors(sdxl_autoencoder_fp16fix_weights_path)
|
|
sdxl.unet.load_from_safetensors(sdxl_unet_weights_path)
|
|
|
|
manager = SDLoraManager(sdxl)
|
|
add_lcm_lora(manager, load_from_safetensors(lora_sdxl_lcm_weights_path))
|
|
|
|
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
|
|
expected_image = expected_lcm_lora_1_0 if condition_scale == 1.0 else expected_lcm_lora_1_2
|
|
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(prompt)
|
|
time_ids = sdxl.default_time_ids
|
|
assert time_ids.shape == (2, 6) # CFG
|
|
|
|
manual_seed(2)
|
|
x = sdxl.init_latents((1024, 1024)).to(sdxl.device, sdxl.dtype)
|
|
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
condition_scale=condition_scale,
|
|
)
|
|
predicted_image = sdxl.lda.latents_to_image(x)
|
|
|
|
psnr = 35 if condition_scale == 1.0 else 33
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=psnr, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
def test_lcm_lora_without_guidance(
|
|
test_device: torch.device,
|
|
sdxl_autoencoder_fp16fix_weights_path: Path,
|
|
sdxl_unet_weights_path: Path,
|
|
sdxl_text_encoder_weights_path: Path,
|
|
lora_sdxl_lcm_weights_path: Path,
|
|
expected_lcm_lora_1_0: Image.Image,
|
|
) -> None:
|
|
if test_device.type == "cpu":
|
|
warn(message="not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
solver = LCMSolver(num_inference_steps=4)
|
|
sdxl = StableDiffusion_XL(device=test_device, dtype=torch.float16, solver=solver)
|
|
sdxl.classifier_free_guidance = False
|
|
|
|
sdxl.clip_text_encoder.load_from_safetensors(sdxl_text_encoder_weights_path)
|
|
sdxl.lda.load_from_safetensors(sdxl_autoencoder_fp16fix_weights_path)
|
|
sdxl.unet.load_from_safetensors(sdxl_unet_weights_path)
|
|
|
|
manager = SDLoraManager(sdxl)
|
|
add_lcm_lora(manager, load_from_safetensors(lora_sdxl_lcm_weights_path))
|
|
|
|
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
|
|
expected_image = expected_lcm_lora_1_0
|
|
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(prompt)
|
|
time_ids = sdxl.default_time_ids
|
|
assert time_ids.shape == (1, 6) # no CFG
|
|
|
|
manual_seed(2)
|
|
x = sdxl.init_latents((1024, 1024)).to(sdxl.device, sdxl.dtype)
|
|
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
condition_scale=0.0,
|
|
)
|
|
predicted_image = sdxl.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)
|