mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-14 00:58:13 +00:00
96 lines
2.5 KiB
Python
96 lines
2.5 KiB
Python
import random
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from refiners.training_utils.common import TimeUnit, TimeValue, TimeValueInput, parse_number_unit_field, scoped_seed
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"input_value, expected_output",
|
|
[
|
|
("10: step", TimeValue(number=10, unit=TimeUnit.STEP)),
|
|
("20 :epoch", TimeValue(number=20, unit=TimeUnit.EPOCH)),
|
|
("30: Iteration", TimeValue(number=30, unit=TimeUnit.ITERATION)),
|
|
(50, TimeValue(number=50, unit=TimeUnit.DEFAULT)),
|
|
({"number": 100, "unit": "STEP"}, TimeValue(number=100, unit=TimeUnit.STEP)),
|
|
(TimeValue(number=200, unit=TimeUnit.EPOCH), TimeValue(number=200, unit=TimeUnit.EPOCH)),
|
|
],
|
|
)
|
|
def test_parse_number_unit_field(input_value: TimeValueInput, expected_output: TimeValue):
|
|
result = parse_number_unit_field(input_value)
|
|
assert result == expected_output
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"invalid_input",
|
|
[
|
|
"invalid:input",
|
|
{"number": "not_a_number", "unit": "step"},
|
|
{"invalid_key": 10},
|
|
None,
|
|
],
|
|
)
|
|
def test_parse_number_unit_field_invalid_input(invalid_input: TimeValueInput):
|
|
with pytest.raises(ValueError):
|
|
parse_number_unit_field(invalid_input)
|
|
|
|
|
|
@scoped_seed(seed=37)
|
|
def pick_a_number() -> int:
|
|
return int(torch.randint(0, 100, (1,)).item())
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"seed, expected_output",
|
|
[
|
|
(42, 42),
|
|
(37, 31),
|
|
(0, 44),
|
|
],
|
|
)
|
|
def test_scoped_seed_with_specific_seed(seed: int, expected_output: int) -> None:
|
|
with scoped_seed(seed):
|
|
assert torch.randint(0, 100, (1,)).item() == expected_output
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"seed, expected_output",
|
|
[
|
|
(42, 81),
|
|
(37, 87),
|
|
(0, 49),
|
|
],
|
|
)
|
|
def test_scoped_seed_with_random_module(seed: int, expected_output: int) -> None:
|
|
with scoped_seed(seed):
|
|
assert random.randint(0, 100) == expected_output
|
|
|
|
|
|
def test_scoped_seed_with_function_call() -> None:
|
|
assert pick_a_number() == 31
|
|
|
|
with scoped_seed(37):
|
|
assert pick_a_number() == 31
|
|
|
|
|
|
def test_scoped_seed_with_callable_seed() -> None:
|
|
with scoped_seed(pick_a_number):
|
|
assert pick_a_number() == 31
|
|
|
|
def add_10(n: int) -> int:
|
|
return n + 10
|
|
|
|
@scoped_seed(seed=add_10)
|
|
def pick_a_number_greater_than_n_plus_10(n: int) -> int:
|
|
return int(torch.randint(n, 100, (1,)).item())
|
|
|
|
assert pick_a_number_greater_than_n_plus_10(10) == 81
|
|
|
|
|
|
def test_scoped_seed_restore_state() -> None:
|
|
random.seed(37)
|
|
with scoped_seed(42):
|
|
random.randint(0, 100)
|
|
assert random.randint(0, 100) == 87
|