refiners/tests/adapters/test_lora.py
Pierre Chapuis 471ef91d1c make __getattr__ on Module return object, not Any
PyTorch chose to make it Any because they expect its users' code
to be "highly dynamic": https://github.com/pytorch/pytorch/pull/104321

It is not the case for us, in Refiners having untyped code
goes contrary to one of our core principles.

Note that there is currently an open PR in PyTorch to
return `Module | Tensor`, but in practice this is not always
correct either: https://github.com/pytorch/pytorch/pull/115074

I also moved Residuals-related code from SD1 to latent_diffusion
because SDXL should not depend on SD1.
2024-02-06 11:32:18 +01:00

122 lines
4.5 KiB
Python

import pytest
import torch
from refiners.fluxion import layers as fl
from refiners.fluxion.adapters.lora import Conv2dLora, LinearLora, Lora, LoraAdapter
@pytest.fixture
def lora() -> LinearLora:
return LinearLora("test", in_features=320, out_features=128, rank=16)
@pytest.fixture
def conv_lora() -> Lora:
return Conv2dLora("conv_test", in_channels=16, out_channels=8, kernel_size=(3, 1), rank=4)
def test_properties(lora: LinearLora, conv_lora: Lora) -> None:
assert lora.name == "test"
assert lora.rank == lora.down.out_features == lora.up.in_features == 16
assert lora.scale == 1.0
assert lora.in_features == lora.down.in_features == 320
assert lora.out_features == lora.up.out_features == 128
assert conv_lora.name == "conv_test"
assert conv_lora.rank == conv_lora.down.out_channels == conv_lora.up.in_channels == 4
assert conv_lora.scale == 1.0
assert conv_lora.in_channels == conv_lora.down.in_channels == 16
assert conv_lora.out_channels == conv_lora.up.out_channels == 8
assert isinstance(conv_lora.down, fl.Conv2d) and isinstance(conv_lora.up, fl.Conv2d)
assert conv_lora.kernel_size == (conv_lora.down.kernel_size[0], conv_lora.up.kernel_size[0]) == (3, 1)
# padding is set so the spatial dimensions are preserved
assert conv_lora.padding == (conv_lora.down.padding[0], conv_lora.up.padding[0]) == (0, 1)
def test_scale_setter(lora: LinearLora) -> None:
lora.scale = 2.0
assert lora.scale == 2.0
assert lora.ensure_find(fl.Multiply).scale == 2.0
def test_from_weights(lora: LinearLora, conv_lora: Conv2dLora) -> None:
assert isinstance(lora.down, fl.Linear) and isinstance(lora.up, fl.Linear)
new_lora = LinearLora.from_weights("test", down=lora.down.weight, up=lora.up.weight)
x = torch.randn(1, 320)
assert torch.allclose(lora(x), new_lora(x))
assert isinstance(conv_lora.down, fl.Conv2d) and isinstance(conv_lora.up, fl.Conv2d)
new_conv_lora = Conv2dLora.from_weights("conv_test", down=conv_lora.down.weight, up=conv_lora.up.weight)
x = torch.randn(1, 16, 64, 64)
assert torch.allclose(conv_lora(x), new_conv_lora(x))
def test_from_dict() -> None:
state_dict = {
"down.weight": torch.randn(320, 128),
"up.weight": torch.randn(128, 320),
"this.is_not_used.alpha": torch.randn(1, 320),
"probably.a.conv.down.weight": torch.randn(4, 16, 3, 3),
"probably.a.conv.up.weight": torch.randn(8, 4, 1, 1),
}
loras = Lora.from_dict("test", state_dict=state_dict)
assert len(loras) == 2
linear_lora, conv_lora = loras.values()
assert isinstance(linear_lora, LinearLora)
assert isinstance(conv_lora, Conv2dLora)
assert linear_lora.name == "test"
assert conv_lora.name == "test"
@pytest.fixture
def lora_adapter() -> LoraAdapter:
target = fl.Linear(320, 128)
lora1 = LinearLora("test1", in_features=320, out_features=128, rank=16, scale=2.0)
lora2 = LinearLora("test2", in_features=320, out_features=128, rank=16, scale=-1.0)
return LoraAdapter(target, lora1, lora2)
def test_names(lora_adapter: LoraAdapter) -> None:
assert set(lora_adapter.names) == {"test1", "test2"}
def test_loras(lora_adapter: LoraAdapter) -> None:
assert set(lora_adapter.loras.keys()) == {"test1", "test2"}
def test_scales(lora_adapter: LoraAdapter) -> None:
assert set(lora_adapter.scales.keys()) == {"test1", "test2"}
assert lora_adapter.scales["test1"] == 2.0
assert lora_adapter.scales["test2"] == -1.0
def test_scale_setter_lora_adapter(lora_adapter: LoraAdapter) -> None:
lora_adapter.scale = {"test1": 0.0, "test2": 3.0}
assert lora_adapter.scales == {"test1": 0.0, "test2": 3.0}
def test_add_lora(lora_adapter: LoraAdapter) -> None:
lora3 = LinearLora("test3", in_features=320, out_features=128, rank=16)
lora_adapter.add_lora(lora3)
assert "test3" in lora_adapter.names
def test_remove_lora(lora_adapter: LoraAdapter) -> None:
lora_adapter.remove_lora("test1")
assert "test1" not in lora_adapter.names
def test_add_existing_lora(lora_adapter: LoraAdapter) -> None:
lora3 = LinearLora("test1", in_features=320, out_features=128, rank=16)
with pytest.raises(AssertionError):
lora_adapter.add_lora(lora3)
def test_remove_nonexistent_lora(lora_adapter: LoraAdapter) -> None:
assert lora_adapter.remove_lora("test3") is None
def test_set_scale_for_nonexistent_lora(lora_adapter: LoraAdapter) -> None:
with pytest.raises(KeyError):
lora_adapter.scale = {"test3": 2.0}