mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-15 09:38:14 +00:00
524 lines
20 KiB
Python
524 lines
20 KiB
Python
from math import isclose
|
|
from pathlib import Path
|
|
from typing import cast
|
|
from warnings import warn
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
import torch.nn as nn
|
|
from PIL import Image
|
|
from tests.foundationals.segment_anything.utils import (
|
|
FacebookSAM,
|
|
FacebookSAMPredictor,
|
|
SAMPrompt,
|
|
intersection_over_union,
|
|
)
|
|
from torch import Tensor
|
|
|
|
import refiners.fluxion.layers as fl
|
|
from refiners.fluxion import manual_seed
|
|
from refiners.fluxion.model_converter import ModelConverter
|
|
from refiners.fluxion.utils import image_to_tensor, load_tensors, no_grad
|
|
from refiners.foundationals.segment_anything.image_encoder import FusedSelfAttention, RelativePositionAttention
|
|
from refiners.foundationals.segment_anything.mask_decoder import MaskDecoder
|
|
from refiners.foundationals.segment_anything.model import ImageEmbedding, SegmentAnythingH
|
|
from refiners.foundationals.segment_anything.transformer import TwoWayTransformerLayer
|
|
|
|
# See predictor_example.ipynb official notebook
|
|
PROMPTS: list[SAMPrompt] = [
|
|
SAMPrompt(foreground_points=((500, 375),)),
|
|
SAMPrompt(background_points=((500, 375),)),
|
|
SAMPrompt(foreground_points=((500, 375), (1125, 625))),
|
|
SAMPrompt(foreground_points=((500, 375),), background_points=((1125, 625),)),
|
|
SAMPrompt(box_points=[[(425, 600), (700, 875)]]),
|
|
SAMPrompt(box_points=[[(425, 600), (700, 875)]], background_points=((575, 750),)),
|
|
]
|
|
|
|
|
|
@pytest.fixture(params=PROMPTS)
|
|
def prompt(request: pytest.FixtureRequest) -> SAMPrompt:
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture
|
|
def one_prompt() -> SAMPrompt:
|
|
# Using the third prompt of the PROMPTS list in order to strictly do the same test as the official notebook in the
|
|
# test_predictor_dense_mask test.
|
|
return PROMPTS[2]
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def facebook_sam_h_weights(test_weights_path: Path) -> Path:
|
|
sam_h_weights = test_weights_path / "sam_vit_h_4b8939.pth"
|
|
if not sam_h_weights.is_file():
|
|
warn(f"could not find weights at {sam_h_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return sam_h_weights
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def facebook_sam_h(facebook_sam_h_weights: Path, test_device: torch.device) -> FacebookSAM:
|
|
from segment_anything import build_sam_vit_h # type: ignore
|
|
|
|
sam_h = cast(FacebookSAM, build_sam_vit_h())
|
|
sam_h.load_state_dict(state_dict=load_tensors(facebook_sam_h_weights))
|
|
return sam_h.to(device=test_device)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def facebook_sam_h_predictor(facebook_sam_h: FacebookSAM) -> FacebookSAMPredictor:
|
|
from segment_anything import SamPredictor # type: ignore
|
|
from segment_anything.modeling import Sam # type: ignore
|
|
|
|
predictor = SamPredictor(cast(Sam, facebook_sam_h)) # type: ignore
|
|
return cast(FacebookSAMPredictor, predictor)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def sam_h(sam_h_weights: Path, test_device: torch.device) -> SegmentAnythingH:
|
|
sam_h = SegmentAnythingH(device=test_device)
|
|
sam_h.load_from_safetensors(tensors_path=sam_h_weights)
|
|
return sam_h
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def sam_h_single_output(sam_h_weights: Path, test_device: torch.device) -> SegmentAnythingH:
|
|
sam_h = SegmentAnythingH(multimask_output=False, device=test_device)
|
|
sam_h.load_from_safetensors(tensors_path=sam_h_weights)
|
|
return sam_h
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def truck(ref_path: Path) -> Image.Image:
|
|
return Image.open(ref_path / "truck.jpg").convert("RGB") # type: ignore
|
|
|
|
|
|
@no_grad()
|
|
def test_fused_self_attention(facebook_sam_h: FacebookSAM) -> None:
|
|
manual_seed(seed=0)
|
|
x = torch.randn(25, 14, 14, 1280, device=facebook_sam_h.device)
|
|
|
|
attention = cast(nn.Module, facebook_sam_h.image_encoder.blocks[0].attn)
|
|
|
|
refiners_attention = FusedSelfAttention(
|
|
embedding_dim=1280, num_heads=16, spatial_size=(14, 14), device=facebook_sam_h.device
|
|
)
|
|
|
|
rpa = refiners_attention.layer("RelativePositionAttention", RelativePositionAttention)
|
|
linear_1 = refiners_attention.layer("Linear_1", fl.Linear)
|
|
linear_2 = refiners_attention.layer("Linear_2", fl.Linear)
|
|
|
|
linear_1.weight = attention.qkv.weight
|
|
linear_1.bias = attention.qkv.bias
|
|
linear_2.weight = attention.proj.weight
|
|
linear_2.bias = attention.proj.bias
|
|
rpa.horizontal_embedding = attention.rel_pos_w
|
|
rpa.vertical_embedding = attention.rel_pos_h
|
|
|
|
y_1 = attention(x)
|
|
assert y_1.shape == x.shape
|
|
|
|
y_2 = refiners_attention(x)
|
|
assert y_2.shape == x.shape
|
|
|
|
assert torch.equal(input=y_1, other=y_2)
|
|
|
|
|
|
def test_mask_decoder_arg() -> None:
|
|
mask_decoder_default = MaskDecoder()
|
|
sam_h = SegmentAnythingH(mask_decoder=mask_decoder_default)
|
|
|
|
assert sam_h.mask_decoder == mask_decoder_default
|
|
|
|
|
|
def test_multimask_output_error() -> None:
|
|
mask_decoder_multimask_output = MaskDecoder(multimask_output=True)
|
|
with pytest.raises(AssertionError, match="multimask_output"):
|
|
SegmentAnythingH(mask_decoder=mask_decoder_multimask_output, multimask_output=False)
|
|
|
|
|
|
@no_grad()
|
|
def test_image_encoder(sam_h: SegmentAnythingH, facebook_sam_h: FacebookSAM, truck: Image.Image) -> None:
|
|
resized = truck.resize(size=(1024, 1024)) # type: ignore
|
|
image_tensor = image_to_tensor(image=resized, device=facebook_sam_h.device)
|
|
y_1 = facebook_sam_h.image_encoder(image_tensor)
|
|
y_2 = sam_h.image_encoder(image_tensor)
|
|
|
|
assert torch.allclose(input=y_1, other=y_2, atol=1e-4)
|
|
|
|
|
|
@no_grad()
|
|
def test_prompt_encoder_dense_positional_embedding(facebook_sam_h: FacebookSAM, sam_h: SegmentAnythingH) -> None:
|
|
facebook_prompt_encoder = facebook_sam_h.prompt_encoder
|
|
refiners_prompt_encoder = sam_h.point_encoder
|
|
|
|
facebook_dense_pe: Tensor = cast(Tensor, facebook_prompt_encoder.get_dense_pe()) # type: ignore
|
|
refiners_dense_pe = refiners_prompt_encoder.get_dense_positional_embedding(image_embedding_size=(64, 64))
|
|
|
|
assert torch.equal(input=refiners_dense_pe, other=facebook_dense_pe)
|
|
|
|
|
|
@no_grad()
|
|
def test_prompt_encoder_no_mask_dense_embedding(facebook_sam_h: FacebookSAM, sam_h: SegmentAnythingH) -> None:
|
|
facebook_prompt_encoder = facebook_sam_h.prompt_encoder
|
|
refiners_prompt_encoder = sam_h.mask_encoder
|
|
|
|
_, facebook_dense_pe = facebook_prompt_encoder(points=None, boxes=None, masks=None)
|
|
refiners_dense_pe = refiners_prompt_encoder.get_no_mask_dense_embedding(image_embedding_size=(64, 64))
|
|
|
|
assert torch.equal(input=refiners_dense_pe, other=facebook_dense_pe)
|
|
|
|
|
|
@no_grad()
|
|
def test_point_encoder(facebook_sam_h: FacebookSAM, sam_h: SegmentAnythingH, prompt: SAMPrompt) -> None:
|
|
facebook_prompt_encoder = facebook_sam_h.prompt_encoder
|
|
refiners_prompt_encoder = sam_h.point_encoder
|
|
|
|
facebook_sparse_pe, _ = facebook_prompt_encoder(
|
|
**prompt.facebook_prompt_encoder_kwargs(device=facebook_sam_h.device)
|
|
)
|
|
|
|
prompt_dict = prompt.__dict__
|
|
# Skip mask prompt, if any, since the point encoder only consumes points and boxes
|
|
# TODO: split `SAMPrompt` and introduce a dedicated one for dense prompts
|
|
prompt_dict.pop("low_res_mask", None)
|
|
|
|
assert prompt_dict is not None, "`test_point_encoder` cannot be called with just a `low_res_mask`"
|
|
|
|
coordinates, type_mask = refiners_prompt_encoder.points_to_tensor(**prompt_dict)
|
|
# Shift to center of pixel + normalize in [0, 1] (see `_embed_points` in segment-anything official repo)
|
|
coordinates[:, :, 0] = (coordinates[:, :, 0] + 0.5) / 1024.0
|
|
coordinates[:, :, 1] = (coordinates[:, :, 1] + 0.5) / 1024.0
|
|
refiners_prompt_encoder.set_type_mask(type_mask=type_mask)
|
|
refiners_sparse_pe = refiners_prompt_encoder(coordinates)
|
|
|
|
assert torch.equal(input=refiners_sparse_pe, other=facebook_sparse_pe)
|
|
|
|
|
|
@no_grad()
|
|
def test_two_way_transformer(facebook_sam_h: FacebookSAM) -> None:
|
|
dense_embedding = torch.randn(1, 64 * 64, 256, device=facebook_sam_h.device)
|
|
dense_positional_embedding = torch.randn(1, 64 * 64, 256, device=facebook_sam_h.device)
|
|
sparse_embedding = torch.randn(1, 3, 256, device=facebook_sam_h.device)
|
|
|
|
refiners_layer = TwoWayTransformerLayer(
|
|
embedding_dim=256, feed_forward_dim=2048, num_heads=8, device=facebook_sam_h.device
|
|
)
|
|
facebook_layer = facebook_sam_h.mask_decoder.transformer.layers[1] # type: ignore
|
|
assert isinstance(facebook_layer, nn.Module)
|
|
|
|
refiners_layer.set_context(
|
|
context="mask_decoder",
|
|
value={
|
|
"dense_embedding": dense_embedding,
|
|
"dense_positional_embedding": dense_positional_embedding,
|
|
"sparse_embedding": sparse_embedding,
|
|
},
|
|
)
|
|
facebook_inputs = {
|
|
"queries": sparse_embedding,
|
|
"keys": dense_embedding,
|
|
"query_pe": sparse_embedding,
|
|
"key_pe": dense_positional_embedding,
|
|
}
|
|
|
|
converter = ModelConverter(
|
|
source_model=facebook_layer,
|
|
target_model=refiners_layer,
|
|
skip_output_check=True, # done below, manually
|
|
)
|
|
|
|
assert converter.run(source_args=facebook_inputs, target_args=(sparse_embedding,))
|
|
|
|
refiners_layer.set_context(
|
|
context="mask_decoder",
|
|
value={
|
|
"dense_embedding": dense_embedding,
|
|
"dense_positional_embedding": dense_positional_embedding,
|
|
"sparse_embedding": sparse_embedding,
|
|
},
|
|
)
|
|
y_1 = facebook_layer(**facebook_inputs)[0]
|
|
y_2 = refiners_layer(sparse_embedding)[0]
|
|
|
|
assert torch.equal(input=y_1, other=y_2)
|
|
|
|
|
|
@no_grad()
|
|
def test_mask_decoder(facebook_sam_h: FacebookSAM, sam_h: SegmentAnythingH) -> None:
|
|
manual_seed(seed=0)
|
|
facebook_mask_decoder = facebook_sam_h.mask_decoder
|
|
refiners_mask_decoder = sam_h.mask_decoder
|
|
|
|
image_embedding = torch.randn(1, 256, 64, 64, device=facebook_sam_h.device)
|
|
dense_positional_embedding = torch.randn(1, 256, 64, 64, device=facebook_sam_h.device)
|
|
point_embedding = torch.randn(1, 3, 256, device=facebook_sam_h.device)
|
|
mask_embedding = torch.randn(1, 256, 64, 64, device=facebook_sam_h.device)
|
|
|
|
from segment_anything.modeling.common import LayerNorm2d # type: ignore
|
|
|
|
assert issubclass(LayerNorm2d, nn.Module)
|
|
custom_layers = {LayerNorm2d: fl.LayerNorm2d}
|
|
|
|
converter = ModelConverter(
|
|
source_model=facebook_mask_decoder,
|
|
target_model=refiners_mask_decoder,
|
|
custom_layer_mapping=custom_layers, # type: ignore
|
|
)
|
|
|
|
inputs = {
|
|
"image_embeddings": image_embedding,
|
|
"image_pe": dense_positional_embedding,
|
|
"sparse_prompt_embeddings": point_embedding,
|
|
"dense_prompt_embeddings": mask_embedding,
|
|
"multimask_output": True,
|
|
}
|
|
|
|
refiners_mask_decoder.set_image_embedding(image_embedding)
|
|
refiners_mask_decoder.set_point_embedding(point_embedding)
|
|
refiners_mask_decoder.set_mask_embedding(mask_embedding)
|
|
refiners_mask_decoder.set_dense_positional_embedding(dense_positional_embedding)
|
|
|
|
mapping = converter.map_state_dicts(source_args=inputs, target_args={})
|
|
assert mapping is not None
|
|
mapping["MaskDecoderTokens.Parameter"] = "iou_token"
|
|
|
|
state_dict = converter._convert_state_dict( # type: ignore
|
|
source_state_dict=facebook_mask_decoder.state_dict(),
|
|
target_state_dict=refiners_mask_decoder.state_dict(),
|
|
state_dict_mapping=mapping,
|
|
)
|
|
state_dict["MaskDecoderTokens.Parameter.weight"] = torch.cat(
|
|
[facebook_mask_decoder.iou_token.weight, facebook_mask_decoder.mask_tokens.weight], dim=0
|
|
) # type: ignore
|
|
refiners_mask_decoder.load_state_dict(state_dict=state_dict)
|
|
|
|
facebook_output = facebook_mask_decoder(**inputs)
|
|
|
|
refiners_mask_decoder.set_image_embedding(image_embedding)
|
|
refiners_mask_decoder.set_point_embedding(point_embedding)
|
|
refiners_mask_decoder.set_mask_embedding(mask_embedding)
|
|
refiners_mask_decoder.set_dense_positional_embedding(dense_positional_embedding)
|
|
mask_prediction, iou_prediction = refiners_mask_decoder()
|
|
|
|
facebook_masks = facebook_output[0]
|
|
facebook_prediction = facebook_output[1]
|
|
|
|
assert torch.equal(input=mask_prediction, other=facebook_masks)
|
|
assert torch.equal(input=iou_prediction, other=facebook_prediction)
|
|
|
|
|
|
def test_predictor(
|
|
facebook_sam_h_predictor: FacebookSAMPredictor, sam_h: SegmentAnythingH, truck: Image.Image, prompt: SAMPrompt
|
|
) -> None:
|
|
predictor = facebook_sam_h_predictor
|
|
predictor.set_image(np.array(truck))
|
|
facebook_masks, facebook_scores, _ = predictor.predict(**prompt.facebook_predict_kwargs()) # type: ignore
|
|
|
|
assert len(facebook_masks) == 3
|
|
|
|
masks, scores, _ = sam_h.predict(truck, **prompt.__dict__)
|
|
masks = masks.squeeze(0)
|
|
scores = scores.squeeze(0)
|
|
|
|
assert len(masks) == 3
|
|
|
|
for i in range(3):
|
|
mask_prediction = masks[i].cpu()
|
|
facebook_mask = torch.as_tensor(facebook_masks[i])
|
|
assert isclose(intersection_over_union(mask_prediction, facebook_mask), 1.0, rel_tol=5e-05)
|
|
assert isclose(scores[i].item(), facebook_scores[i].item(), rel_tol=1e-05)
|
|
|
|
|
|
def test_predictor_image_embedding(sam_h: SegmentAnythingH, truck: Image.Image, one_prompt: SAMPrompt) -> None:
|
|
masks_ref, scores_ref, _ = sam_h.predict(truck, **one_prompt.__dict__)
|
|
|
|
image_embedding = sam_h.compute_image_embedding(truck)
|
|
masks, scores, _ = sam_h.predict(image_embedding, **one_prompt.__dict__)
|
|
|
|
assert torch.equal(masks, masks_ref)
|
|
assert torch.equal(scores_ref, scores)
|
|
|
|
|
|
def test_predictor_dense_mask(
|
|
facebook_sam_h_predictor: FacebookSAMPredictor, sam_h: SegmentAnythingH, truck: Image.Image, one_prompt: SAMPrompt
|
|
) -> None:
|
|
"""
|
|
NOTE : Binarizing intermediate masks isn't necessary, as per SamPredictor.predict_torch docstring:
|
|
> mask_input (np.ndarray): A low resolution mask input to the model, typically
|
|
> coming from a previous prediction iteration. Has form Bx1xHxW, where
|
|
> for SAM, H=W=256. Masks returned by a previous iteration of the
|
|
> predict method do not need further transformation.
|
|
"""
|
|
predictor = facebook_sam_h_predictor
|
|
predictor.set_image(np.array(truck))
|
|
facebook_masks, facebook_scores, facebook_logits = predictor.predict(
|
|
**one_prompt.facebook_predict_kwargs(), # type: ignore
|
|
multimask_output=True,
|
|
)
|
|
|
|
assert len(facebook_masks) == 3
|
|
|
|
facebook_mask_input = facebook_logits[np.argmax(facebook_scores)] # shape: HxW
|
|
|
|
# Using the same mask coordinates inputs as the official notebook
|
|
facebook_prompt = SAMPrompt(
|
|
foreground_points=((500, 375),), background_points=((1125, 625),), low_res_mask=facebook_mask_input[None, ...]
|
|
)
|
|
facebook_dense_masks, _, _ = predictor.predict(**facebook_prompt.facebook_predict_kwargs(), multimask_output=True) # type: ignore
|
|
|
|
assert len(facebook_dense_masks) == 3
|
|
|
|
masks, scores, logits = sam_h.predict(truck, **one_prompt.__dict__)
|
|
masks = masks.squeeze(0)
|
|
scores = scores.squeeze(0)
|
|
|
|
assert len(masks) == 3
|
|
|
|
mask_input = logits[:, scores.max(dim=0).indices, ...] # shape: 1xHxW
|
|
|
|
assert np.allclose(
|
|
mask_input.cpu(), facebook_mask_input, atol=1e-1
|
|
) # Lower doesn't pass, but it's close enough for logits
|
|
|
|
refiners_prompt = SAMPrompt(
|
|
foreground_points=((500, 375),), background_points=((1125, 625),), low_res_mask=mask_input.unsqueeze(0)
|
|
)
|
|
dense_masks, _, _ = sam_h.predict(truck, **refiners_prompt.__dict__)
|
|
dense_masks = dense_masks.squeeze(0)
|
|
|
|
assert len(dense_masks) == 3
|
|
|
|
for i in range(3):
|
|
dense_mask_prediction = dense_masks[i].cpu()
|
|
facebook_dense_mask = torch.as_tensor(facebook_dense_masks[i])
|
|
assert dense_mask_prediction.shape == facebook_dense_mask.shape
|
|
assert isclose(intersection_over_union(dense_mask_prediction, facebook_dense_mask), 1.0, rel_tol=5e-05)
|
|
|
|
|
|
def test_predictor_single_output(
|
|
facebook_sam_h_predictor: FacebookSAMPredictor,
|
|
sam_h_single_output: SegmentAnythingH,
|
|
truck: Image.Image,
|
|
one_prompt: SAMPrompt,
|
|
) -> None:
|
|
predictor = facebook_sam_h_predictor
|
|
predictor.set_image(np.array(truck))
|
|
|
|
facebook_masks, facebook_scores, facebook_low_res_masks = predictor.predict( # type: ignore
|
|
**one_prompt.facebook_predict_kwargs(), # type: ignore
|
|
multimask_output=False,
|
|
)
|
|
|
|
assert len(facebook_masks) == 1
|
|
|
|
masks, scores, low_res_masks = sam_h_single_output.predict(truck, **one_prompt.__dict__)
|
|
masks = masks.squeeze(0)
|
|
scores = scores.squeeze(0)
|
|
|
|
assert len(masks) == 1
|
|
|
|
assert torch.allclose(
|
|
low_res_masks[0, 0, ...],
|
|
torch.as_tensor(facebook_low_res_masks[0], device=sam_h_single_output.device),
|
|
atol=5e-2, # see test_predictor_resized_single_output for more explanation
|
|
)
|
|
assert isclose(scores[0].item(), facebook_scores[0].item(), abs_tol=1e-05)
|
|
|
|
mask_prediction = masks[0].cpu()
|
|
facebook_mask = torch.as_tensor(facebook_masks[0])
|
|
assert isclose(intersection_over_union(mask_prediction, facebook_mask), 1.0, rel_tol=5e-05)
|
|
|
|
|
|
def test_predictor_resized_single_output(
|
|
facebook_sam_h_predictor: FacebookSAMPredictor,
|
|
sam_h_single_output: SegmentAnythingH,
|
|
truck: Image.Image,
|
|
one_prompt: SAMPrompt,
|
|
) -> None:
|
|
# The refiners implementation of SAM differs from official
|
|
# implementation by a 6e-3 absolute diff (see test_predictor_single_output)
|
|
# This diff is related to 2 components :
|
|
# * image_encoder (see test_image_encoder)
|
|
# * point rescaling (facebook uses numpy while refiners uses torch)
|
|
#
|
|
# Current test is designed to workaround those 2 components
|
|
# * facebook image_embedding is used
|
|
# * the image is pre-resized by (1024, 1024) so there is no rescaling
|
|
# Then the test pass with torch.equal
|
|
|
|
predictor = facebook_sam_h_predictor
|
|
size = (1024, 1024)
|
|
resized_truck = truck.resize(size) # type: ignore
|
|
predictor.set_image(np.array(resized_truck))
|
|
|
|
_, _, facebook_low_res_masks = predictor.predict( # type: ignore
|
|
**one_prompt.facebook_predict_kwargs(), # type: ignore
|
|
multimask_output=False,
|
|
)
|
|
|
|
facebook_image_embedding = ImageEmbedding(features=predictor.features, original_image_size=size)
|
|
|
|
_, _, low_res_masks = sam_h_single_output.predict(facebook_image_embedding, **one_prompt.__dict__)
|
|
|
|
assert torch.equal(
|
|
low_res_masks[0, 0, ...],
|
|
torch.as_tensor(facebook_low_res_masks[0], device=sam_h_single_output.device),
|
|
)
|
|
|
|
|
|
def test_mask_encoder(
|
|
facebook_sam_h_predictor: FacebookSAMPredictor, sam_h: SegmentAnythingH, truck: Image.Image, one_prompt: SAMPrompt
|
|
) -> None:
|
|
predictor = facebook_sam_h_predictor
|
|
predictor.set_image(np.array(truck))
|
|
_, facebook_scores, facebook_logits = predictor.predict(
|
|
**one_prompt.facebook_predict_kwargs(), # type: ignore
|
|
multimask_output=True,
|
|
)
|
|
facebook_mask_input = facebook_logits[np.argmax(facebook_scores)]
|
|
facebook_mask_input = (
|
|
torch.from_numpy(facebook_mask_input) # type: ignore
|
|
.to(device=predictor.model.device)
|
|
.unsqueeze(0)
|
|
.unsqueeze(0) # shape: 1x1xHxW
|
|
)
|
|
|
|
_, fb_dense_embeddings = predictor.model.prompt_encoder(
|
|
points=None,
|
|
boxes=None,
|
|
masks=facebook_mask_input,
|
|
)
|
|
|
|
_, scores, logits = sam_h.predict(truck, **one_prompt.__dict__)
|
|
scores = scores.squeeze(0)
|
|
mask_input = logits[:, scores.max(dim=0).indices, ...].unsqueeze(0) # shape: 1x1xHxW
|
|
dense_embeddings = sam_h.mask_encoder(mask_input)
|
|
|
|
assert facebook_mask_input.shape == mask_input.shape
|
|
assert torch.allclose(dense_embeddings, fb_dense_embeddings, atol=1e-3)
|
|
|
|
|
|
@no_grad()
|
|
def test_batch_mask_decoder(sam_h: SegmentAnythingH) -> None:
|
|
batch_size = 5
|
|
|
|
image_embedding = torch.randn(1, 256, 64, 64, device=sam_h.device, dtype=sam_h.dtype).repeat(batch_size, 1, 1, 1)
|
|
mask_embedding = torch.randn(1, 256, 64, 64, device=sam_h.device, dtype=sam_h.dtype).repeat(batch_size, 1, 1, 1)
|
|
dense_positional_embedding = torch.randn(1, 256, 64, 64, device=sam_h.device, dtype=sam_h.dtype).repeat(
|
|
batch_size, 1, 1, 1
|
|
)
|
|
point_embedding = torch.randn(1, 2, 256, device=sam_h.device, dtype=sam_h.dtype).repeat(batch_size, 1, 1)
|
|
|
|
sam_h.mask_decoder.set_image_embedding(image_embedding)
|
|
sam_h.mask_decoder.set_mask_embedding(mask_embedding)
|
|
sam_h.mask_decoder.set_point_embedding(point_embedding)
|
|
sam_h.mask_decoder.set_dense_positional_embedding(dense_positional_embedding)
|
|
|
|
mask_prediction, iou_prediction = sam_h.mask_decoder()
|
|
|
|
assert mask_prediction.shape == (batch_size, 3, 256, 256)
|
|
assert iou_prediction.shape == (batch_size, 3)
|
|
assert torch.equal(mask_prediction[0], mask_prediction[1])
|