mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-22 14:18:46 +00:00
56 lines
1.9 KiB
Python
56 lines
1.9 KiB
Python
from pathlib import Path
|
|
from warnings import warn
|
|
|
|
import pytest
|
|
import torch
|
|
from PIL import Image
|
|
|
|
from refiners.fluxion.utils import image_to_tensor, tensor_to_image
|
|
from refiners.foundationals.latent_diffusion.preprocessors.informative_drawings import InformativeDrawings
|
|
from tests.utils import ensure_similar_images
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def diffusion_ref_path(test_e2e_path: Path) -> Path:
|
|
return test_e2e_path / "test_diffusion_ref"
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def cutecat_init(diffusion_ref_path: Path) -> Image.Image:
|
|
return Image.open(diffusion_ref_path / "cutecat_init.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_informative_drawings(diffusion_ref_path: Path) -> Image.Image:
|
|
return Image.open(diffusion_ref_path / "cutecat_guide_lineart.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def informative_drawings_weights(test_weights_path: Path) -> Path:
|
|
weights = test_weights_path / "informative-drawings.safetensors"
|
|
if not weights.is_file():
|
|
warn(f"could not find weights at {test_weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return weights
|
|
|
|
|
|
@pytest.fixture
|
|
def informative_drawings_model(informative_drawings_weights: Path, test_device: torch.device) -> InformativeDrawings:
|
|
model = InformativeDrawings(device=test_device)
|
|
model.load_from_safetensors(informative_drawings_weights)
|
|
return model
|
|
|
|
|
|
@torch.no_grad()
|
|
def test_preprocessor_informative_drawing(
|
|
informative_drawings_model: InformativeDrawings,
|
|
cutecat_init: Image.Image,
|
|
expected_image_informative_drawings: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
in_tensor = image_to_tensor(cutecat_init.convert("RGB"), device=test_device)
|
|
out_tensor = informative_drawings_model(in_tensor)
|
|
rgb_tensor = out_tensor.repeat(1, 3, 1, 1) # grayscale to RGB
|
|
image = tensor_to_image(rgb_tensor)
|
|
ensure_similar_images(image, expected_image_informative_drawings)
|