refiners/tests/foundationals/latent_diffusion/test_unet.py
2023-12-29 15:09:02 +01:00

26 lines
702 B
Python

import torch
from refiners.fluxion import manual_seed
from refiners.fluxion.utils import no_grad
from refiners.foundationals.latent_diffusion import SD1UNet
def test_unet_context_flush():
manual_seed(0)
text_embedding = torch.randn(1, 77, 768)
timestep = torch.randint(0, 999, size=(1, 1))
x = torch.randn(1, 4, 32, 32)
unet = SD1UNet(in_channels=4)
unet.set_clip_text_embedding(clip_text_embedding=text_embedding) # not flushed between forward-s
with no_grad():
unet.set_timestep(timestep=timestep)
y_1 = unet(x.clone())
with no_grad():
unet.set_timestep(timestep=timestep)
y_2 = unet(x.clone())
assert torch.equal(y_1, y_2)