mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-23 14:48:45 +00:00
68 lines
2.1 KiB
Python
68 lines
2.1 KiB
Python
import argparse
|
|
from typing import TYPE_CHECKING, cast
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from refiners.fluxion.model_converter import ModelConverter
|
|
from refiners.fluxion.utils import load_tensors
|
|
from refiners.foundationals.latent_diffusion.preprocessors.informative_drawings import InformativeDrawings
|
|
|
|
try:
|
|
from model import Generator # type: ignore
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Please download the model.py file from https://github.com/carolineec/informative-drawings and add it to your"
|
|
" PYTHONPATH"
|
|
)
|
|
if TYPE_CHECKING:
|
|
Generator = cast(nn.Module, Generator)
|
|
|
|
|
|
class Args(argparse.Namespace):
|
|
source_path: str
|
|
output_path: str
|
|
verbose: bool
|
|
half: bool
|
|
|
|
|
|
def setup_converter(args: Args) -> ModelConverter:
|
|
source = Generator(3, 1, 3)
|
|
source.load_state_dict(state_dict=load_tensors(args.source_path))
|
|
source.eval()
|
|
target = InformativeDrawings()
|
|
x = torch.randn(1, 3, 512, 512)
|
|
converter = ModelConverter(source_model=source, target_model=target, skip_output_check=True, verbose=args.verbose)
|
|
if not converter.run(source_args=(x,)):
|
|
raise RuntimeError("Model conversion failed")
|
|
return converter
|
|
|
|
|
|
def main() -> None:
|
|
parser = argparse.ArgumentParser(
|
|
description="Converts a pretrained Informative Drawings model to a refiners Informative Drawings model"
|
|
)
|
|
parser.add_argument(
|
|
"--from",
|
|
type=str,
|
|
dest="source_path",
|
|
default="model2.pth",
|
|
help="Path to the source model. (default: 'model2.pth').",
|
|
)
|
|
parser.add_argument(
|
|
"--to",
|
|
type=str,
|
|
dest="output_path",
|
|
default="informative-drawings.safetensors",
|
|
help="Path to save the converted model. (default: 'informative-drawings.safetensors').",
|
|
)
|
|
parser.add_argument("--verbose", action="store_true", dest="verbose")
|
|
parser.add_argument("--half", action="store_true", dest="half")
|
|
args = parser.parse_args(namespace=Args())
|
|
converter = setup_converter(args=args)
|
|
converter.save_to_safetensors(path=args.output_path, half=args.half)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|