mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-22 22:28:46 +00:00
82 lines
2.6 KiB
Python
82 lines
2.6 KiB
Python
from refiners.fluxion.adapters.lora import Lora, SingleLoraAdapter, LoraAdapter
|
|
from torch import randn, allclose
|
|
import refiners.fluxion.layers as fl
|
|
|
|
|
|
def test_single_lora_adapter() -> None:
|
|
chain = fl.Chain(
|
|
fl.Chain(
|
|
fl.Linear(in_features=1, out_features=1),
|
|
fl.Linear(in_features=1, out_features=1),
|
|
),
|
|
fl.Linear(in_features=1, out_features=2),
|
|
)
|
|
x = randn(1, 1)
|
|
y = chain(x)
|
|
|
|
lora_adapter = SingleLoraAdapter(chain.Chain.Linear_1).inject(chain.Chain)
|
|
|
|
assert isinstance(lora_adapter[1], Lora)
|
|
assert allclose(input=chain(x), other=y)
|
|
assert lora_adapter.parent == chain.Chain
|
|
|
|
lora_adapter.eject()
|
|
assert isinstance(chain.Chain[0], fl.Linear)
|
|
assert len(chain) == 2
|
|
|
|
lora_adapter.inject(chain.Chain)
|
|
assert isinstance(chain.Chain[0], SingleLoraAdapter)
|
|
|
|
|
|
def test_lora_adapter() -> None:
|
|
chain = fl.Chain(
|
|
fl.Chain(
|
|
fl.Linear(in_features=1, out_features=1),
|
|
fl.Linear(in_features=1, out_features=1),
|
|
),
|
|
fl.Linear(in_features=1, out_features=2),
|
|
)
|
|
|
|
# create and inject twice
|
|
|
|
a1 = LoraAdapter[fl.Chain](chain, sub_targets=chain.walk(fl.Linear), rank=1, scale=1.0).inject()
|
|
assert len(list(chain.layers(Lora))) == 3
|
|
|
|
a2 = LoraAdapter[fl.Chain](chain, sub_targets=chain.walk(fl.Linear), rank=1, scale=1.0).inject()
|
|
assert len(list(chain.layers(Lora))) == 6
|
|
|
|
# If we init a LoRA when another LoRA is already injected, the Linear
|
|
# layers of the first LoRA will be adapted too, which is typically not
|
|
# what we want.
|
|
# This issue can be avoided either by making the predicate for
|
|
# `walk` raise StopIteration when it encounters a LoRA (see the SD LoRA)
|
|
# or by creating all the LoRA Adapters first, before injecting them
|
|
# (see below).
|
|
assert len(list(chain.layers(Lora, recurse=True))) == 12
|
|
|
|
# ejection in forward order
|
|
|
|
a1.eject()
|
|
assert len(list(chain.layers(Lora))) == 3
|
|
a2.eject()
|
|
assert len(list(chain.layers(Lora))) == 0
|
|
|
|
# create twice then inject twice
|
|
|
|
a1 = LoraAdapter[fl.Chain](chain, sub_targets=chain.walk(fl.Linear), rank=1, scale=1.0)
|
|
a2 = LoraAdapter[fl.Chain](chain, sub_targets=chain.walk(fl.Linear), rank=1, scale=1.0)
|
|
a1.inject()
|
|
a2.inject()
|
|
assert len(list(chain.layers(Lora))) == 6
|
|
|
|
# If we inject after init we do not have the target selection problem,
|
|
# the LoRA layers are not adapted.
|
|
assert len(list(chain.layers(Lora, recurse=True))) == 6
|
|
|
|
# ejection in reverse order
|
|
|
|
a2.eject()
|
|
assert len(list(chain.layers(Lora))) == 3
|
|
a1.eject()
|
|
assert len(list(chain.layers(Lora))) == 0
|