mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-14 17:18:14 +00:00
338 lines
10 KiB
Python
338 lines
10 KiB
Python
import random
|
|
import warnings
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
import torch
|
|
from torch import Tensor, nn
|
|
from torch.optim.sgd import SGD
|
|
|
|
from refiners.fluxion import layers as fl
|
|
from refiners.fluxion.utils import norm
|
|
from refiners.training_utils.callback import Callback, CallbackConfig
|
|
from refiners.training_utils.clock import ClockConfig
|
|
from refiners.training_utils.common import (
|
|
Epoch,
|
|
Step,
|
|
count_learnable_parameters,
|
|
human_readable_number,
|
|
scoped_seed,
|
|
)
|
|
from refiners.training_utils.config import BaseConfig, IterationOrEpochField, ModelConfig, TimeValueField
|
|
from refiners.training_utils.data_loader import DataLoaderConfig, create_data_loader
|
|
from refiners.training_utils.trainer import (
|
|
Trainer,
|
|
TrainingClock,
|
|
WarmupScheduler,
|
|
count_learnable_parameters,
|
|
human_readable_number,
|
|
register_callback,
|
|
register_model,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class MockBatch:
|
|
inputs: torch.Tensor
|
|
targets: torch.Tensor
|
|
|
|
|
|
class MockModelConfig(ModelConfig):
|
|
use_activation: bool
|
|
|
|
|
|
class MockCallbackConfig(CallbackConfig):
|
|
on_batch_end_interval: TimeValueField
|
|
on_batch_end_seed: int
|
|
on_optimizer_step_interval: IterationOrEpochField
|
|
|
|
|
|
class MockConfig(BaseConfig):
|
|
# we register the `early_callback` before the `clock` callback to test the callback ordering
|
|
early_callback: CallbackConfig = CallbackConfig()
|
|
clock: ClockConfig = ClockConfig()
|
|
|
|
mock_model: MockModelConfig
|
|
mock_callback: MockCallbackConfig
|
|
data_loader: DataLoaderConfig
|
|
|
|
|
|
class MockModel(fl.Chain):
|
|
def __init__(self):
|
|
super().__init__(
|
|
fl.Linear(10, 10),
|
|
fl.Linear(10, 10),
|
|
fl.Linear(10, 10),
|
|
)
|
|
|
|
def add_activation(self) -> None:
|
|
self.insert(1, fl.SiLU())
|
|
self.insert(3, fl.SiLU())
|
|
|
|
|
|
class MockCallback(Callback["MockTrainer"]):
|
|
def __init__(self, config: MockCallbackConfig) -> None:
|
|
self.config = config
|
|
self.optimizer_step_count = 0
|
|
self.step_end_count = 0
|
|
self.optimizer_step_random_int: int | None = None
|
|
self.step_end_random_int: int | None = None
|
|
|
|
def on_init_begin(self, trainer: "MockTrainer") -> None:
|
|
pass
|
|
|
|
def on_optimizer_step_begin(self, trainer: "MockTrainer") -> None:
|
|
if not trainer.clock.is_due(self.config.on_optimizer_step_interval):
|
|
return
|
|
self.optimizer_step_count += 1
|
|
self.optimizer_step_random_int = random.randint(0, 100)
|
|
|
|
def on_step_end(self, trainer: "MockTrainer") -> None:
|
|
if not trainer.clock.is_due(self.config.on_batch_end_interval):
|
|
return
|
|
|
|
# We verify that this callback is always called before the clock is updated (see `_call_callbacks` in trainer.py)
|
|
assert trainer.clock.step // 3 <= self.step_end_count
|
|
|
|
self.step_end_count += 1
|
|
with scoped_seed(self.config.on_batch_end_seed):
|
|
self.step_end_random_int = random.randint(0, 100)
|
|
|
|
|
|
class EarlyMockCallback(Callback["MockTrainer"]):
|
|
"""
|
|
A callback that will be registered before the Clock callback to test the callback ordering.
|
|
"""
|
|
|
|
def on_train_begin(self, trainer: "MockTrainer") -> None:
|
|
assert trainer.clock.start_time is not None, "Clock callback should have been called before this callback."
|
|
|
|
|
|
class MockTrainer(Trainer[MockConfig, MockBatch]):
|
|
step_counter: int = 0
|
|
model_registration_counter: int = 0
|
|
|
|
@property
|
|
def dataset_length(self) -> int:
|
|
return 20
|
|
|
|
def get_item(self, index: int) -> MockBatch:
|
|
return MockBatch(inputs=torch.randn(1, 10), targets=torch.randn(1, 10))
|
|
|
|
def collate_fn(self, batch: list[MockBatch]) -> MockBatch:
|
|
return MockBatch(
|
|
inputs=torch.cat([b.inputs for b in batch]),
|
|
targets=torch.cat([b.targets for b in batch]),
|
|
)
|
|
|
|
def create_data_iterable(self):
|
|
return create_data_loader(
|
|
get_item=self.get_item,
|
|
length=self.dataset_length,
|
|
config=self.config.data_loader,
|
|
collate_fn=self.collate_fn,
|
|
)
|
|
|
|
@register_callback()
|
|
def early_callback(self, config: CallbackConfig) -> EarlyMockCallback:
|
|
return EarlyMockCallback()
|
|
|
|
@register_callback()
|
|
def mock_callback(self, config: MockCallbackConfig) -> MockCallback:
|
|
return MockCallback(config)
|
|
|
|
@register_model()
|
|
def mock_model(self, config: MockModelConfig) -> MockModel:
|
|
model = MockModel()
|
|
if config.use_activation:
|
|
model.add_activation()
|
|
|
|
self.model_registration_counter += 1
|
|
return model
|
|
|
|
def compute_loss(self, batch: MockBatch) -> Tensor:
|
|
self.step_counter += 1
|
|
inputs, targets = batch.inputs.to(self.device), batch.targets.to(self.device)
|
|
outputs = self.mock_model(inputs)
|
|
return norm(outputs - targets)
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_config() -> MockConfig:
|
|
config = MockConfig.load_from_toml(Path(__file__).parent / "mock_config.toml")
|
|
return config
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_trainer(mock_config: MockConfig) -> MockTrainer:
|
|
return MockTrainer(config=mock_config)
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_trainer_short(mock_config: MockConfig) -> MockTrainer:
|
|
mock_config_short = mock_config.model_copy(deep=True)
|
|
mock_config_short.training.duration = Step(3)
|
|
return MockTrainer(config=mock_config_short)
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_model() -> fl.Chain:
|
|
return MockModel()
|
|
|
|
|
|
def test_count_learnable_parameters_with_params() -> None:
|
|
params = [
|
|
nn.Parameter(torch.randn(2, 2), requires_grad=True),
|
|
nn.Parameter(torch.randn(5), requires_grad=False),
|
|
nn.Parameter(torch.randn(3, 3), requires_grad=True),
|
|
]
|
|
assert count_learnable_parameters(params) == 13
|
|
|
|
|
|
def test_count_learnable_parameters_with_model(mock_model: fl.Chain) -> None:
|
|
assert count_learnable_parameters(mock_model.parameters()) == 330
|
|
|
|
|
|
def test_human_readable_number() -> None:
|
|
assert human_readable_number(123) == "123.0"
|
|
assert human_readable_number(1234) == "1.2K"
|
|
assert human_readable_number(1234567) == "1.2M"
|
|
|
|
|
|
@pytest.fixture
|
|
def training_clock() -> TrainingClock:
|
|
return TrainingClock(
|
|
training_duration=Epoch(5),
|
|
gradient_accumulation=Step(1),
|
|
lr_scheduler_interval=Epoch(1),
|
|
)
|
|
|
|
|
|
def test_timer_functionality(training_clock: TrainingClock) -> None:
|
|
training_clock.start_timer()
|
|
assert training_clock.start_time is not None
|
|
training_clock.stop_timer()
|
|
assert training_clock.end_time is not None
|
|
assert training_clock.time_elapsed >= 0
|
|
|
|
|
|
def test_mock_trainer_initialization(mock_config: MockConfig, mock_trainer: MockTrainer) -> None:
|
|
assert mock_trainer.config == mock_config
|
|
assert isinstance(mock_trainer, MockTrainer)
|
|
assert mock_trainer.optimizer is not None
|
|
assert mock_trainer.lr_scheduler is not None
|
|
assert mock_trainer.model_registration_counter == 1
|
|
|
|
|
|
def test_training_cycle(mock_trainer: MockTrainer) -> None:
|
|
clock = mock_trainer.clock
|
|
config = mock_trainer.config
|
|
|
|
assert mock_trainer.step_counter == 0
|
|
assert clock.epoch == 0
|
|
|
|
mock_trainer.train()
|
|
|
|
assert clock.epoch == config.training.duration.number
|
|
assert mock_trainer.step_counter == mock_trainer.clock.step
|
|
|
|
|
|
def test_callback_registration(mock_trainer: MockTrainer) -> None:
|
|
mock_trainer.train()
|
|
|
|
# Check that the callback skips every other iteration
|
|
assert mock_trainer.mock_callback.optimizer_step_count == mock_trainer.clock.iteration // 2 + 1
|
|
assert mock_trainer.mock_callback.step_end_count == mock_trainer.clock.step // 3 + 1
|
|
|
|
# Check that the random seed was set
|
|
assert mock_trainer.mock_callback.optimizer_step_random_int == 41
|
|
assert mock_trainer.mock_callback.step_end_random_int == 81
|
|
|
|
|
|
def test_training_short_cycle(mock_trainer_short: MockTrainer) -> None:
|
|
clock = mock_trainer_short.clock
|
|
config = mock_trainer_short.config
|
|
|
|
assert mock_trainer_short.step_counter == 0
|
|
assert mock_trainer_short.clock.epoch == 0
|
|
|
|
mock_trainer_short.train()
|
|
|
|
assert clock.step == config.training.duration.number
|
|
|
|
|
|
@pytest.fixture
|
|
def warmup_scheduler():
|
|
optimizer = SGD([nn.Parameter(torch.randn(2, 2), requires_grad=True)], lr=0.1)
|
|
scheduler = torch.optim.lr_scheduler.ConstantLR(optimizer, 1)
|
|
return WarmupScheduler(optimizer, scheduler, warmup_scheduler_steps=100)
|
|
|
|
|
|
def test_initial_lr(warmup_scheduler: WarmupScheduler) -> None:
|
|
optimizer = warmup_scheduler.optimizer
|
|
for group in optimizer.param_groups:
|
|
assert group["lr"] == 1e-3
|
|
|
|
|
|
def test_warmup_lr(warmup_scheduler: WarmupScheduler) -> None:
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings(
|
|
"ignore",
|
|
category=UserWarning,
|
|
message=r"Detected call of `lr_scheduler.step\(\)` before `optimizer.step\(\)`",
|
|
)
|
|
for _ in range(102):
|
|
warmup_scheduler.step()
|
|
optimizer = warmup_scheduler.optimizer
|
|
for group in optimizer.param_groups:
|
|
assert group["lr"] == 0.1
|
|
|
|
|
|
class MockTrainerWith2Models(MockTrainer):
|
|
@register_model()
|
|
def mock_model1(self, config: ModelConfig) -> MockModel:
|
|
return MockModel()
|
|
|
|
@register_model()
|
|
def mock_model2(self, config: ModelConfig) -> MockModel:
|
|
return MockModel()
|
|
|
|
def compute_loss(self, batch: MockBatch) -> Tensor:
|
|
self.step_counter += 1
|
|
inputs, targets = batch.inputs.to(self.device), batch.targets.to(self.device)
|
|
outputs = self.mock_model2(self.mock_model1(inputs))
|
|
return norm(outputs - targets)
|
|
|
|
|
|
class MockConfig_2_Models(BaseConfig):
|
|
mock_model1: ModelConfig
|
|
mock_model2: ModelConfig
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_config_2_models() -> MockConfig_2_Models:
|
|
return MockConfig_2_Models.load_from_toml(Path(__file__).parent / "mock_config_2_models.toml")
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_trainer_2_models(mock_config_2_models: MockConfig) -> MockTrainerWith2Models:
|
|
return MockTrainerWith2Models(config=mock_config_2_models)
|
|
|
|
|
|
def test_optimizer_parameters(mock_trainer_2_models: MockTrainerWith2Models) -> None:
|
|
assert len(mock_trainer_2_models.optimizer.param_groups) == 2
|
|
assert mock_trainer_2_models.optimizer.param_groups[0]["lr"] == 1e-5
|
|
|
|
|
|
class MockTrainerNoDataLoader(MockTrainer):
|
|
def create_data_iterable(self) -> list[MockBatch]: # type: ignore
|
|
return [MockBatch(inputs=torch.randn(4, 10), targets=torch.randn(4, 10)) for _ in range(5)]
|
|
|
|
|
|
def test_trainer_no_data_loader(mock_config: MockConfig) -> None:
|
|
trainer = MockTrainerNoDataLoader(config=mock_config)
|
|
trainer.train()
|
|
assert trainer.step_counter == 500
|
|
assert trainer.clock.epoch == 100
|