refiners/tests/fluxion/layers/test_converter.py
2023-10-18 14:39:24 +02:00

71 lines
2.1 KiB
Python

import torch
import pytest
from warnings import warn
import refiners.fluxion.layers as fl
from refiners.fluxion.layers.chain import ChainError, Distribute
def test_converter_device_single_tensor(test_device: torch.device) -> None:
if test_device.type != "cuda":
warn("only running on CUDA, skipping")
pytest.skip()
chain = fl.Chain(
fl.Converter(set_device=True, set_dtype=False),
fl.Linear(in_features=1, out_features=1, device=test_device),
)
tensor = torch.randn(1, 1)
converted_tensor = chain(tensor)
assert converted_tensor.device == torch.device(device=test_device)
def test_converter_dtype_single_tensor() -> None:
chain = fl.Chain(
fl.Converter(set_device=False, set_dtype=True),
fl.Linear(in_features=1, out_features=1, dtype=torch.float64),
)
tensor = torch.randn(1, 1).to(dtype=torch.float32)
converted_tensor = chain(tensor)
assert converted_tensor.dtype == torch.float64
def test_converter_multiple_tensors(test_device: torch.device) -> None:
if test_device.type != "cuda":
warn("only running on CUDA, skipping")
pytest.skip()
chain = fl.Chain(
fl.Converter(set_device=True, set_dtype=True),
Distribute(
fl.Linear(in_features=1, out_features=1, device=test_device, dtype=torch.float64),
fl.Linear(in_features=1, out_features=1, device=test_device, dtype=torch.float64),
),
)
tensor1 = torch.randn(1, 1)
tensor2 = torch.randn(1, 1)
converted_tensor1, converted_tensor2 = chain(tensor1, tensor2)
assert converted_tensor1.device == torch.device(device=test_device)
assert converted_tensor1.dtype == torch.float64
assert converted_tensor2.device == torch.device(device=test_device)
assert converted_tensor2.dtype == torch.float64
def test_converter_no_parent_device_or_dtype() -> None:
chain = fl.Chain(
fl.Lambda(func=(lambda x: x)),
fl.Converter(set_device=True, set_dtype=False),
)
tensor = torch.randn(1, 1)
with pytest.raises(expected_exception=ChainError):
chain(tensor)