mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-22 06:08:46 +00:00
59 lines
2 KiB
Python
59 lines
2 KiB
Python
import torch
|
|
|
|
from refiners.fluxion.utils import create_state_dict_mapping, convert_state_dict, save_to_safetensors
|
|
|
|
from diffusers import DiffusionPipeline # type: ignore
|
|
from diffusers.models.unet_2d_condition import UNet2DConditionModel # type: ignore
|
|
|
|
from refiners.foundationals.latent_diffusion.unet import UNet
|
|
|
|
|
|
@torch.no_grad()
|
|
def convert(src_model: UNet2DConditionModel) -> dict[str, torch.Tensor]:
|
|
dst_model = UNet(in_channels=4, clip_embedding_dim=768)
|
|
|
|
x = torch.randn(1, 4, 32, 32)
|
|
timestep = torch.tensor(data=[0])
|
|
clip_text_embeddings = torch.randn(1, 77, 768)
|
|
|
|
src_args = (x, timestep, clip_text_embeddings)
|
|
dst_model.set_timestep(timestep=timestep)
|
|
dst_model.set_clip_text_embedding(clip_text_embedding=clip_text_embeddings)
|
|
dst_args = (x,)
|
|
|
|
mapping = create_state_dict_mapping(source_model=src_model, target_model=dst_model, source_args=src_args, target_args=dst_args) # type: ignore
|
|
assert mapping is not None, "Model conversion failed"
|
|
state_dict = convert_state_dict(
|
|
source_state_dict=src_model.state_dict(), target_state_dict=dst_model.state_dict(), state_dict_mapping=mapping
|
|
)
|
|
return {k: v.half() for k, v in state_dict.items()}
|
|
|
|
|
|
def main() -> None:
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--from",
|
|
type=str,
|
|
dest="source",
|
|
required=False,
|
|
default="runwayml/stable-diffusion-v1-5",
|
|
help="Source model",
|
|
)
|
|
parser.add_argument(
|
|
"--output-file",
|
|
type=str,
|
|
required=False,
|
|
default="stable_diffusion_1_5_unet.safetensors",
|
|
help="Path for the output file",
|
|
)
|
|
args = parser.parse_args()
|
|
src_model = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path=args.source).unet # type: ignore
|
|
tensors = convert(src_model=src_model) # type: ignore
|
|
save_to_safetensors(path=args.output_file, tensors=tensors)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|