mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-23 14:48:45 +00:00
2430 lines
84 KiB
Python
2430 lines
84 KiB
Python
import gc
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
from typing import Iterator
|
|
from warnings import warn
|
|
|
|
import pytest
|
|
import torch
|
|
from PIL import Image
|
|
from tests.utils import ensure_similar_images
|
|
|
|
from refiners.fluxion.layers.attentions import ScaledDotProductAttention
|
|
from refiners.fluxion.utils import image_to_tensor, load_from_safetensors, load_tensors, manual_seed, no_grad
|
|
from refiners.foundationals.clip.concepts import ConceptExtender
|
|
from refiners.foundationals.latent_diffusion import (
|
|
ControlLoraAdapter,
|
|
SD1ControlnetAdapter,
|
|
SD1IPAdapter,
|
|
SD1T2IAdapter,
|
|
SD1UNet,
|
|
SDFreeUAdapter,
|
|
SDXLIPAdapter,
|
|
SDXLT2IAdapter,
|
|
StableDiffusion_1,
|
|
StableDiffusion_1_Inpainting,
|
|
)
|
|
from refiners.foundationals.latent_diffusion.lora import SDLoraManager
|
|
from refiners.foundationals.latent_diffusion.multi_diffusion import DiffusionTarget
|
|
from refiners.foundationals.latent_diffusion.reference_only_control import ReferenceOnlyControlAdapter
|
|
from refiners.foundationals.latent_diffusion.restart import Restart
|
|
from refiners.foundationals.latent_diffusion.solvers import DDIM, Euler, NoiseSchedule, SolverParams
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_diffusion import SD1MultiDiffusion
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.model import StableDiffusion_XL
|
|
from refiners.foundationals.latent_diffusion.style_aligned import StyleAlignedAdapter
|
|
|
|
|
|
def _img_open(path: Path) -> Image.Image:
|
|
return Image.open(path) # type: ignore
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def ensure_gc():
|
|
# Avoid GPU OOMs
|
|
# See https://github.com/pytest-dev/pytest/discussions/8153#discussioncomment-214812
|
|
gc.collect()
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def ref_path(test_e2e_path: Path) -> Path:
|
|
return test_e2e_path / "test_diffusion_ref"
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def cutecat_init(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "cutecat_init.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def kitchen_dog(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "kitchen_dog.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def kitchen_dog_mask(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "kitchen_dog_mask.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def woman_image(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "woman.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def statue_image(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "statue.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_std_random_init(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_std_random_init.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_std_random_init_euler(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_std_random_init_euler.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_karras_random_init(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_karras_random_init.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_std_random_init_sag(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_std_random_init_sag.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_std_init_image(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_std_init_image.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_std_inpainting(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_std_inpainting.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_controlnet_stack(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_controlnet_stack.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_ip_adapter_woman(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_image_ip_adapter_woman.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_ip_adapter_multi(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_image_ip_adapter_multi.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_ip_adapter_plus_statue(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_image_ip_adapter_plus_statue.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_sdxl_ip_adapter_woman(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_image_sdxl_ip_adapter_woman.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_sdxl_ip_adapter_plus_woman(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_image_sdxl_ip_adapter_plus_woman.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_ip_adapter_controlnet(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_ip_adapter_controlnet.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_sdxl_ddim_random_init(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_cutecat_sdxl_ddim_random_init.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_sdxl_ddim_random_init_sag(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_cutecat_sdxl_ddim_random_init_sag.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_sdxl_euler_random_init(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_cutecat_sdxl_euler_random_init.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_style_aligned(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_style_aligned.png").convert(mode="RGB")
|
|
|
|
|
|
@pytest.fixture(scope="module", params=["canny", "depth", "lineart", "normals", "sam"])
|
|
def controlnet_data(
|
|
ref_path: Path, test_weights_path: Path, request: pytest.FixtureRequest
|
|
) -> Iterator[tuple[str, Image.Image, Image.Image, Path]]:
|
|
cn_name: str = request.param
|
|
condition_image = _img_open(ref_path / f"cutecat_guide_{cn_name}.png").convert("RGB")
|
|
expected_image = _img_open(ref_path / f"expected_controlnet_{cn_name}.png").convert("RGB")
|
|
weights_fn = {
|
|
"depth": "lllyasviel_control_v11f1p_sd15_depth",
|
|
"canny": "lllyasviel_control_v11p_sd15_canny",
|
|
"lineart": "lllyasviel_control_v11p_sd15_lineart",
|
|
"normals": "lllyasviel_control_v11p_sd15_normalbae",
|
|
"sam": "mfidabel_controlnet-segment-anything",
|
|
}
|
|
|
|
weights_path = test_weights_path / "controlnet" / f"{weights_fn[cn_name]}.safetensors"
|
|
yield (cn_name, condition_image, expected_image, weights_path)
|
|
|
|
|
|
@pytest.fixture(scope="module", params=["canny"])
|
|
def controlnet_data_scale_decay(
|
|
ref_path: Path, test_weights_path: Path, request: pytest.FixtureRequest
|
|
) -> Iterator[tuple[str, Image.Image, Image.Image, Path]]:
|
|
cn_name: str = request.param
|
|
condition_image = _img_open(ref_path / f"cutecat_guide_{cn_name}.png").convert("RGB")
|
|
expected_image = _img_open(ref_path / f"expected_controlnet_{cn_name}_scale_decay.png").convert("RGB")
|
|
weights_fn = {
|
|
"canny": "lllyasviel_control_v11p_sd15_canny",
|
|
}
|
|
|
|
weights_path = test_weights_path / "controlnet" / f"{weights_fn[cn_name]}.safetensors"
|
|
yield (cn_name, condition_image, expected_image, weights_path)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def controlnet_data_tile(ref_path: Path, test_weights_path: Path) -> tuple[Image.Image, Image.Image, Path]:
|
|
condition_image = _img_open(ref_path / f"low_res_dog.png").convert("RGB").resize((1024, 1024)) # type: ignore
|
|
expected_image = _img_open(ref_path / f"expected_controlnet_tile.png").convert("RGB")
|
|
weights_path = test_weights_path / "controlnet" / "lllyasviel_control_v11f1e_sd15_tile.safetensors"
|
|
return condition_image, expected_image, weights_path
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def controlnet_data_canny(ref_path: Path, test_weights_path: Path) -> tuple[str, Image.Image, Image.Image, Path]:
|
|
cn_name = "canny"
|
|
condition_image = _img_open(ref_path / f"cutecat_guide_{cn_name}.png").convert("RGB")
|
|
expected_image = _img_open(ref_path / f"expected_controlnet_{cn_name}.png").convert("RGB")
|
|
weights_path = test_weights_path / "controlnet" / "lllyasviel_control_v11p_sd15_canny.safetensors"
|
|
return cn_name, condition_image, expected_image, weights_path
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def controlnet_data_depth(ref_path: Path, test_weights_path: Path) -> tuple[str, Image.Image, Image.Image, Path]:
|
|
cn_name = "depth"
|
|
condition_image = _img_open(ref_path / f"cutecat_guide_{cn_name}.png").convert("RGB")
|
|
expected_image = _img_open(ref_path / f"expected_controlnet_{cn_name}.png").convert("RGB")
|
|
weights_path = test_weights_path / "controlnet" / "lllyasviel_control_v11f1p_sd15_depth.safetensors"
|
|
return cn_name, condition_image, expected_image, weights_path
|
|
|
|
|
|
@dataclass
|
|
class ControlLoraConfig:
|
|
scale: float
|
|
condition_path: str
|
|
weights_path: str
|
|
|
|
|
|
@dataclass
|
|
class ControlLoraResolvedConfig:
|
|
scale: float
|
|
condition_image: Image.Image
|
|
weights_path: Path
|
|
|
|
|
|
CONTROL_LORA_CONFIGS: dict[str, dict[str, ControlLoraConfig]] = {
|
|
"expected_controllora_PyraCanny.png": {
|
|
"PyraCanny": ControlLoraConfig(
|
|
scale=1.0,
|
|
condition_path="cutecat_guide_PyraCanny.png",
|
|
weights_path="refiners_control-lora-canny-rank128.safetensors",
|
|
),
|
|
},
|
|
"expected_controllora_CPDS.png": {
|
|
"CPDS": ControlLoraConfig(
|
|
scale=1.0,
|
|
condition_path="cutecat_guide_CPDS.png",
|
|
weights_path="refiners_fooocus_xl_cpds_128.safetensors",
|
|
),
|
|
},
|
|
"expected_controllora_PyraCanny+CPDS.png": {
|
|
"PyraCanny": ControlLoraConfig(
|
|
scale=0.55,
|
|
condition_path="cutecat_guide_PyraCanny.png",
|
|
weights_path="refiners_control-lora-canny-rank128.safetensors",
|
|
),
|
|
"CPDS": ControlLoraConfig(
|
|
scale=0.55,
|
|
condition_path="cutecat_guide_CPDS.png",
|
|
weights_path="refiners_fooocus_xl_cpds_128.safetensors",
|
|
),
|
|
},
|
|
"expected_controllora_disabled.png": {
|
|
"PyraCanny": ControlLoraConfig(
|
|
scale=0.0,
|
|
condition_path="cutecat_guide_PyraCanny.png",
|
|
weights_path="refiners_control-lora-canny-rank128.safetensors",
|
|
),
|
|
"CPDS": ControlLoraConfig(
|
|
scale=0.0,
|
|
condition_path="cutecat_guide_CPDS.png",
|
|
weights_path="refiners_fooocus_xl_cpds_128.safetensors",
|
|
),
|
|
},
|
|
}
|
|
|
|
|
|
@pytest.fixture(params=CONTROL_LORA_CONFIGS.items())
|
|
def controllora_sdxl_config(
|
|
request: pytest.FixtureRequest,
|
|
ref_path: Path,
|
|
test_weights_path: Path,
|
|
) -> tuple[Image.Image, dict[str, ControlLoraResolvedConfig]]:
|
|
name: str = request.param[0]
|
|
configs: dict[str, ControlLoraConfig] = request.param[1]
|
|
expected_image = _img_open(ref_path / name).convert("RGB")
|
|
|
|
loaded_configs = {
|
|
config_name: ControlLoraResolvedConfig(
|
|
scale=config.scale,
|
|
condition_image=_img_open(ref_path / config.condition_path).convert("RGB"),
|
|
weights_path=test_weights_path / "control-loras" / config.weights_path,
|
|
)
|
|
for config_name, config in configs.items()
|
|
}
|
|
|
|
return expected_image, loaded_configs
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def t2i_adapter_data_depth(ref_path: Path, test_weights_path: Path) -> tuple[str, Image.Image, Image.Image, Path]:
|
|
name = "depth"
|
|
condition_image = _img_open(ref_path / f"cutecat_guide_{name}.png").convert("RGB")
|
|
expected_image = _img_open(ref_path / f"expected_t2i_adapter_{name}.png").convert("RGB")
|
|
weights_path = test_weights_path / "T2I-Adapter" / "t2iadapter_depth_sd15v2.safetensors"
|
|
return name, condition_image, expected_image, weights_path
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def t2i_adapter_xl_data_canny(ref_path: Path, test_weights_path: Path) -> tuple[str, Image.Image, Image.Image, Path]:
|
|
name = "canny"
|
|
condition_image = _img_open(ref_path / f"fairy_guide_{name}.png").convert("RGB")
|
|
expected_image = _img_open(ref_path / f"expected_t2i_adapter_xl_{name}.png").convert("RGB")
|
|
weights_path = test_weights_path / "T2I-Adapter" / "t2i-adapter-canny-sdxl-1.0.safetensors"
|
|
|
|
if not weights_path.is_file():
|
|
warn(f"could not find weights at {weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
return name, condition_image, expected_image, weights_path
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def lora_data_pokemon(ref_path: Path, test_weights_path: Path) -> tuple[Image.Image, dict[str, torch.Tensor]]:
|
|
expected_image = _img_open(ref_path / "expected_lora_pokemon.png").convert("RGB")
|
|
weights_path = test_weights_path / "loras" / "pokemon-lora" / "pytorch_lora_weights.bin"
|
|
|
|
if not weights_path.is_file():
|
|
warn(f"could not find weights at {weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
tensors = load_tensors(weights_path)
|
|
return expected_image, tensors
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def lora_data_dpo(ref_path: Path, test_weights_path: Path) -> tuple[Image.Image, dict[str, torch.Tensor]]:
|
|
expected_image = _img_open(ref_path / "expected_sdxl_dpo_lora.png").convert("RGB")
|
|
weights_path = test_weights_path / "loras" / "dpo-lora" / "pytorch_lora_weights.safetensors"
|
|
|
|
if not weights_path.is_file():
|
|
warn(f"could not find weights at {weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
tensors = load_from_safetensors(weights_path)
|
|
return expected_image, tensors
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def lora_sliders(test_weights_path: Path) -> tuple[dict[str, dict[str, torch.Tensor]], dict[str, float]]:
|
|
weights_path = test_weights_path / "loras" / "sliders"
|
|
|
|
if not weights_path.is_dir():
|
|
warn(f"could not find weights at {weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
return {
|
|
"age": load_tensors(weights_path / "age.pt"), # type: ignore
|
|
"cartoon_style": load_tensors(weights_path / "cartoon_style.pt"), # type: ignore
|
|
"eyesize": load_tensors(weights_path / "eyesize.pt"), # type: ignore
|
|
}, {
|
|
"age": 0.3,
|
|
"cartoon_style": -0.2,
|
|
"eyesize": -0.2,
|
|
}
|
|
|
|
|
|
@pytest.fixture
|
|
def scene_image_inpainting_refonly(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "inpainting-scene.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def mask_image_inpainting_refonly(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "inpainting-mask.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def target_image_inpainting_refonly(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "inpainting-target.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_inpainting_refonly(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_inpainting_refonly.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_refonly(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_refonly.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def condition_image_refonly(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "cyberpunk_guide.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_image_textual_inversion_random_init(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_textual_inversion_random_init.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_multi_diffusion(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_multi_diffusion.png").convert(mode="RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_restart(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_restart.png").convert(mode="RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_freeu(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_freeu.png").convert(mode="RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_sdxl_multi_loras(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_sdxl_multi_loras.png").convert(mode="RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def hello_world_assets(ref_path: Path) -> tuple[Image.Image, Image.Image, Image.Image, Image.Image]:
|
|
assets = Path(__file__).parent.parent.parent / "assets"
|
|
dropy = assets / "dropy_logo.png"
|
|
image_prompt = assets / "dragon_quest_slime.jpg"
|
|
condition_image = assets / "dropy_canny.png"
|
|
return (
|
|
_img_open(dropy).convert(mode="RGB"),
|
|
_img_open(image_prompt).convert(mode="RGB"),
|
|
_img_open(condition_image).convert(mode="RGB"),
|
|
_img_open(ref_path / "expected_dropy_slime_9752.png").convert(mode="RGB"),
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def text_embedding_textual_inversion(test_textual_inversion_path: Path) -> torch.Tensor:
|
|
return load_tensors(test_textual_inversion_path / "gta5-artwork" / "learned_embeds.bin")["<gta5-artwork>"]
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def text_encoder_weights(test_weights_path: Path) -> Path:
|
|
text_encoder_weights = test_weights_path / "CLIPTextEncoderL.safetensors"
|
|
if not text_encoder_weights.is_file():
|
|
warn(f"could not find weights at {text_encoder_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return text_encoder_weights
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def lda_weights(test_weights_path: Path) -> Path:
|
|
lda_weights = test_weights_path / "lda.safetensors"
|
|
if not lda_weights.is_file():
|
|
warn(f"could not find weights at {lda_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return lda_weights
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def unet_weights_std(test_weights_path: Path) -> Path:
|
|
unet_weights_std = test_weights_path / "unet.safetensors"
|
|
if not unet_weights_std.is_file():
|
|
warn(f"could not find weights at {unet_weights_std}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return unet_weights_std
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def unet_weights_inpainting(test_weights_path: Path) -> Path:
|
|
unet_weights_inpainting = test_weights_path / "inpainting" / "unet.safetensors"
|
|
if not unet_weights_inpainting.is_file():
|
|
warn(f"could not find weights at {unet_weights_inpainting}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return unet_weights_inpainting
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def lda_ft_mse_weights(test_weights_path: Path) -> Path:
|
|
lda_weights = test_weights_path / "lda_ft_mse.safetensors"
|
|
if not lda_weights.is_file():
|
|
warn(f"could not find weights at {lda_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return lda_weights
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def ip_adapter_weights(test_weights_path: Path) -> Path:
|
|
ip_adapter_weights = test_weights_path / "ip-adapter_sd15.safetensors"
|
|
if not ip_adapter_weights.is_file():
|
|
warn(f"could not find weights at {ip_adapter_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return ip_adapter_weights
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def ip_adapter_plus_weights(test_weights_path: Path) -> Path:
|
|
ip_adapter_weights = test_weights_path / "ip-adapter-plus_sd15.safetensors"
|
|
if not ip_adapter_weights.is_file():
|
|
warn(f"could not find weights at {ip_adapter_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return ip_adapter_weights
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def sdxl_ip_adapter_weights(test_weights_path: Path) -> Path:
|
|
ip_adapter_weights = test_weights_path / "ip-adapter_sdxl_vit-h.safetensors"
|
|
if not ip_adapter_weights.is_file():
|
|
warn(f"could not find weights at {ip_adapter_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return ip_adapter_weights
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def sdxl_ip_adapter_plus_weights(test_weights_path: Path) -> Path:
|
|
ip_adapter_weights = test_weights_path / "ip-adapter-plus_sdxl_vit-h.safetensors"
|
|
if not ip_adapter_weights.is_file():
|
|
warn(f"could not find weights at {ip_adapter_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return ip_adapter_weights
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def image_encoder_weights(test_weights_path: Path) -> Path:
|
|
image_encoder_weights = test_weights_path / "CLIPImageEncoderH.safetensors"
|
|
if not image_encoder_weights.is_file():
|
|
warn(f"could not find weights at {image_encoder_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return image_encoder_weights
|
|
|
|
|
|
@pytest.fixture
|
|
def sd15_std(
|
|
text_encoder_weights: Path, lda_weights: Path, unet_weights_std: Path, test_device: torch.device
|
|
) -> StableDiffusion_1:
|
|
if test_device.type == "cpu":
|
|
warn("not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
sd15 = StableDiffusion_1(device=test_device)
|
|
|
|
sd15.clip_text_encoder.load_from_safetensors(text_encoder_weights)
|
|
sd15.lda.load_from_safetensors(lda_weights)
|
|
sd15.unet.load_from_safetensors(unet_weights_std)
|
|
|
|
return sd15
|
|
|
|
|
|
@pytest.fixture
|
|
def sd15_std_float16(
|
|
text_encoder_weights: Path, lda_weights: Path, unet_weights_std: Path, test_device: torch.device
|
|
) -> StableDiffusion_1:
|
|
if test_device.type == "cpu":
|
|
warn("not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
sd15 = StableDiffusion_1(device=test_device, dtype=torch.float16)
|
|
|
|
sd15.clip_text_encoder.load_from_safetensors(text_encoder_weights)
|
|
sd15.lda.load_from_safetensors(lda_weights)
|
|
sd15.unet.load_from_safetensors(unet_weights_std)
|
|
|
|
return sd15
|
|
|
|
|
|
@pytest.fixture
|
|
def sd15_inpainting(
|
|
text_encoder_weights: Path, lda_weights: Path, unet_weights_inpainting: Path, test_device: torch.device
|
|
) -> StableDiffusion_1_Inpainting:
|
|
if test_device.type == "cpu":
|
|
warn("not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
unet = SD1UNet(in_channels=9)
|
|
sd15 = StableDiffusion_1_Inpainting(unet=unet, device=test_device)
|
|
|
|
sd15.clip_text_encoder.load_from_safetensors(text_encoder_weights)
|
|
sd15.lda.load_from_safetensors(lda_weights)
|
|
sd15.unet.load_from_safetensors(unet_weights_inpainting)
|
|
|
|
return sd15
|
|
|
|
|
|
@pytest.fixture
|
|
def sd15_inpainting_float16(
|
|
text_encoder_weights: Path, lda_weights: Path, unet_weights_inpainting: Path, test_device: torch.device
|
|
) -> StableDiffusion_1_Inpainting:
|
|
if test_device.type == "cpu":
|
|
warn("not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
unet = SD1UNet(in_channels=9)
|
|
sd15 = StableDiffusion_1_Inpainting(unet=unet, device=test_device, dtype=torch.float16)
|
|
|
|
sd15.clip_text_encoder.load_from_safetensors(text_encoder_weights)
|
|
sd15.lda.load_from_safetensors(lda_weights)
|
|
sd15.unet.load_from_safetensors(unet_weights_inpainting)
|
|
|
|
return sd15
|
|
|
|
|
|
@pytest.fixture
|
|
def sd15_ddim(
|
|
text_encoder_weights: Path, lda_weights: Path, unet_weights_std: Path, test_device: torch.device
|
|
) -> StableDiffusion_1:
|
|
if test_device.type == "cpu":
|
|
warn("not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
ddim_solver = DDIM(num_inference_steps=20)
|
|
sd15 = StableDiffusion_1(solver=ddim_solver, device=test_device)
|
|
|
|
sd15.clip_text_encoder.load_from_safetensors(text_encoder_weights)
|
|
sd15.lda.load_from_safetensors(lda_weights)
|
|
sd15.unet.load_from_safetensors(unet_weights_std)
|
|
|
|
return sd15
|
|
|
|
|
|
@pytest.fixture
|
|
def sd15_ddim_karras(
|
|
text_encoder_weights: Path, lda_weights: Path, unet_weights_std: Path, test_device: torch.device
|
|
) -> StableDiffusion_1:
|
|
if test_device.type == "cpu":
|
|
warn("not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
ddim_solver = DDIM(num_inference_steps=20, params=SolverParams(noise_schedule=NoiseSchedule.KARRAS))
|
|
sd15 = StableDiffusion_1(solver=ddim_solver, device=test_device)
|
|
|
|
sd15.clip_text_encoder.load_from_safetensors(text_encoder_weights)
|
|
sd15.lda.load_from_safetensors(lda_weights)
|
|
sd15.unet.load_from_safetensors(unet_weights_std)
|
|
|
|
return sd15
|
|
|
|
|
|
@pytest.fixture
|
|
def sd15_euler(
|
|
text_encoder_weights: Path, lda_weights: Path, unet_weights_std: Path, test_device: torch.device
|
|
) -> StableDiffusion_1:
|
|
if test_device.type == "cpu":
|
|
warn("not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
euler_solver = Euler(num_inference_steps=30)
|
|
sd15 = StableDiffusion_1(solver=euler_solver, device=test_device)
|
|
|
|
sd15.clip_text_encoder.load_from_safetensors(text_encoder_weights)
|
|
sd15.lda.load_from_safetensors(lda_weights)
|
|
sd15.unet.load_from_safetensors(unet_weights_std)
|
|
|
|
return sd15
|
|
|
|
|
|
@pytest.fixture
|
|
def sd15_ddim_lda_ft_mse(
|
|
text_encoder_weights: Path, lda_ft_mse_weights: Path, unet_weights_std: Path, test_device: torch.device
|
|
) -> StableDiffusion_1:
|
|
if test_device.type == "cpu":
|
|
warn("not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
ddim_solver = DDIM(num_inference_steps=20)
|
|
sd15 = StableDiffusion_1(solver=ddim_solver, device=test_device)
|
|
|
|
sd15.clip_text_encoder.load_state_dict(load_from_safetensors(text_encoder_weights))
|
|
sd15.lda.load_state_dict(load_from_safetensors(lda_ft_mse_weights))
|
|
sd15.unet.load_state_dict(load_from_safetensors(unet_weights_std))
|
|
|
|
return sd15
|
|
|
|
|
|
@pytest.fixture
|
|
def sdxl_lda_weights(test_weights_path: Path) -> Path:
|
|
sdxl_lda_weights = test_weights_path / "sdxl-lda.safetensors"
|
|
if not sdxl_lda_weights.is_file():
|
|
warn(message=f"could not find weights at {sdxl_lda_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return sdxl_lda_weights
|
|
|
|
|
|
@pytest.fixture
|
|
def sdxl_lda_fp16_fix_weights(test_weights_path: Path) -> Path:
|
|
sdxl_lda_weights = test_weights_path / "sdxl-lda-fp16-fix.safetensors"
|
|
if not sdxl_lda_weights.is_file():
|
|
warn(message=f"could not find weights at {sdxl_lda_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return sdxl_lda_weights
|
|
|
|
|
|
@pytest.fixture
|
|
def sdxl_unet_weights(test_weights_path: Path) -> Path:
|
|
sdxl_unet_weights = test_weights_path / "sdxl-unet.safetensors"
|
|
if not sdxl_unet_weights.is_file():
|
|
warn(message=f"could not find weights at {sdxl_unet_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return sdxl_unet_weights
|
|
|
|
|
|
@pytest.fixture
|
|
def sdxl_text_encoder_weights(test_weights_path: Path) -> Path:
|
|
sdxl_double_text_encoder_weights = test_weights_path / "DoubleCLIPTextEncoder.safetensors"
|
|
if not sdxl_double_text_encoder_weights.is_file():
|
|
warn(message=f"could not find weights at {sdxl_double_text_encoder_weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return sdxl_double_text_encoder_weights
|
|
|
|
|
|
@pytest.fixture
|
|
def sdxl_ddim(
|
|
sdxl_text_encoder_weights: Path, sdxl_lda_weights: Path, sdxl_unet_weights: Path, test_device: torch.device
|
|
) -> StableDiffusion_XL:
|
|
if test_device.type == "cpu":
|
|
warn(message="not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
solver = DDIM(num_inference_steps=30)
|
|
sdxl = StableDiffusion_XL(solver=solver, device=test_device)
|
|
|
|
sdxl.clip_text_encoder.load_from_safetensors(tensors_path=sdxl_text_encoder_weights)
|
|
sdxl.lda.load_from_safetensors(tensors_path=sdxl_lda_weights)
|
|
sdxl.unet.load_from_safetensors(tensors_path=sdxl_unet_weights)
|
|
|
|
return sdxl
|
|
|
|
|
|
@pytest.fixture
|
|
def sdxl_ddim_lda_fp16_fix(
|
|
sdxl_text_encoder_weights: Path, sdxl_lda_fp16_fix_weights: Path, sdxl_unet_weights: Path, test_device: torch.device
|
|
) -> StableDiffusion_XL:
|
|
if test_device.type == "cpu":
|
|
warn(message="not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
solver = DDIM(num_inference_steps=30)
|
|
sdxl = StableDiffusion_XL(solver=solver, device=test_device)
|
|
|
|
sdxl.clip_text_encoder.load_from_safetensors(tensors_path=sdxl_text_encoder_weights)
|
|
sdxl.lda.load_from_safetensors(tensors_path=sdxl_lda_fp16_fix_weights)
|
|
sdxl.unet.load_from_safetensors(tensors_path=sdxl_unet_weights)
|
|
|
|
return sdxl
|
|
|
|
|
|
@pytest.fixture
|
|
def sdxl_euler_deterministic(sdxl_ddim: StableDiffusion_XL) -> StableDiffusion_XL:
|
|
return StableDiffusion_XL(
|
|
unet=sdxl_ddim.unet,
|
|
lda=sdxl_ddim.lda,
|
|
clip_text_encoder=sdxl_ddim.clip_text_encoder,
|
|
solver=Euler(num_inference_steps=30),
|
|
device=sdxl_ddim.device,
|
|
dtype=sdxl_ddim.dtype,
|
|
)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_std_random_init(
|
|
sd15_std: StableDiffusion_1, expected_image_std_random_init: Image.Image, test_device: torch.device
|
|
):
|
|
sd15 = sd15_std
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_inference_steps(30)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_std_random_init)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_batch2(sd15_std: StableDiffusion_1):
|
|
sd15 = sd15_std
|
|
|
|
prompt1 = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt1 = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
prompt2 = "a cute dog"
|
|
negative_prompt2 = "lowres, bad anatomy, bad hands"
|
|
|
|
clip_text_embedding_b2 = sd15.compute_clip_text_embedding(
|
|
text=[prompt1, prompt2], negative_text=[negative_prompt1, negative_prompt2]
|
|
)
|
|
|
|
step = sd15.steps[0]
|
|
|
|
manual_seed(2)
|
|
rand_b2 = torch.randn(2, 4, 64, 64, device=sd15.device)
|
|
|
|
x_b2 = sd15(
|
|
rand_b2,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding_b2,
|
|
condition_scale=7.5,
|
|
)
|
|
|
|
assert x_b2.shape == (2, 4, 64, 64)
|
|
|
|
rand_1 = rand_b2[0:1]
|
|
clip_text_embedding_1 = sd15.compute_clip_text_embedding(text=[prompt1], negative_text=[negative_prompt1])
|
|
x_1 = sd15(
|
|
rand_1,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding_1,
|
|
condition_scale=7.5,
|
|
)
|
|
|
|
rand_2 = rand_b2[1:2]
|
|
clip_text_embedding_2 = sd15.compute_clip_text_embedding(text=[prompt2], negative_text=[negative_prompt2])
|
|
x_2 = sd15(
|
|
rand_2,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding_2,
|
|
condition_scale=7.5,
|
|
)
|
|
|
|
# The 5e-3 tolerance is detailed in https://github.com/finegrain-ai/refiners/pull/263#issuecomment-1956404911
|
|
assert torch.allclose(
|
|
x_b2[0], x_1[0], atol=5e-3, rtol=0
|
|
), f"Batch 2 and batch1 output should be the same and are distant of {torch.max((x_b2[0] - x_1[0]).abs()).item()}"
|
|
assert torch.allclose(
|
|
x_b2[1], x_2[0], atol=5e-3, rtol=0
|
|
), f"Batch 2 and batch1 output should be the same and are distant of {torch.max((x_b2[1] - x_2[0]).abs()).item()}"
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_std_random_init_euler(
|
|
sd15_euler: StableDiffusion_1, expected_image_std_random_init_euler: Image.Image, test_device: torch.device
|
|
):
|
|
sd15 = sd15_euler
|
|
euler_solver = sd15_euler.solver
|
|
assert isinstance(euler_solver, Euler)
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_inference_steps(30)
|
|
|
|
manual_seed(2)
|
|
x = sd15.init_latents((512, 512)).to(sd15.device, sd15.dtype)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_std_random_init_euler)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_karras_random_init(
|
|
sd15_ddim_karras: StableDiffusion_1, expected_karras_random_init: Image.Image, test_device: torch.device
|
|
):
|
|
sd15 = sd15_ddim_karras
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_karras_random_init, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_std_random_init_float16(
|
|
sd15_std_float16: StableDiffusion_1, expected_image_std_random_init: Image.Image, test_device: torch.device
|
|
):
|
|
sd15 = sd15_std_float16
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
assert clip_text_embedding.dtype == torch.float16
|
|
|
|
sd15.set_inference_steps(30)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device, dtype=torch.float16)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
ensure_similar_images(predicted_image, expected_image_std_random_init, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_std_random_init_sag(
|
|
sd15_std: StableDiffusion_1, expected_image_std_random_init_sag: Image.Image, test_device: torch.device
|
|
):
|
|
sd15 = sd15_std
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_inference_steps(30)
|
|
sd15.set_self_attention_guidance(enable=True, scale=0.75)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_std_random_init_sag)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_std_init_image(
|
|
sd15_std: StableDiffusion_1,
|
|
cutecat_init: Image.Image,
|
|
expected_image_std_init_image: Image.Image,
|
|
):
|
|
sd15 = sd15_std
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_inference_steps(35, first_step=5)
|
|
|
|
manual_seed(2)
|
|
x = sd15.init_latents((512, 512), cutecat_init)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_std_init_image)
|
|
|
|
|
|
@no_grad()
|
|
def test_rectangular_init_latents(
|
|
sd15_std: StableDiffusion_1,
|
|
cutecat_init: Image.Image,
|
|
):
|
|
sd15 = sd15_std
|
|
|
|
# Just check latents initialization with a non-square image (and not the entire diffusion)
|
|
width, height = 512, 504
|
|
rect_init_image = cutecat_init.crop((0, 0, width, height))
|
|
x = sd15.init_latents((height, width), rect_init_image)
|
|
|
|
assert sd15.lda.latents_to_image(x).size == (width, height)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_inpainting(
|
|
sd15_inpainting: StableDiffusion_1_Inpainting,
|
|
kitchen_dog: Image.Image,
|
|
kitchen_dog_mask: Image.Image,
|
|
expected_image_std_inpainting: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_inpainting
|
|
|
|
prompt = "a large white cat, detailed high-quality professional image, sitting on a chair, in a kitchen"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_inference_steps(30)
|
|
sd15.set_inpainting_conditions(kitchen_dog, kitchen_dog_mask)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
# PSNR and SSIM values are large because with float32 we get large differences even v.s. ourselves.
|
|
ensure_similar_images(predicted_image, expected_image_std_inpainting, min_psnr=25, min_ssim=0.95)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_inpainting_float16(
|
|
sd15_inpainting_float16: StableDiffusion_1_Inpainting,
|
|
kitchen_dog: Image.Image,
|
|
kitchen_dog_mask: Image.Image,
|
|
expected_image_std_inpainting: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_inpainting_float16
|
|
|
|
prompt = "a large white cat, detailed high-quality professional image, sitting on a chair, in a kitchen"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
assert clip_text_embedding.dtype == torch.float16
|
|
|
|
sd15.set_inference_steps(30)
|
|
sd15.set_inpainting_conditions(kitchen_dog, kitchen_dog_mask)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device, dtype=torch.float16)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
# PSNR and SSIM values are large because float16 is even worse than float32.
|
|
ensure_similar_images(predicted_image, expected_image_std_inpainting, min_psnr=20, min_ssim=0.92)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_controlnet(
|
|
sd15_std: StableDiffusion_1,
|
|
controlnet_data: tuple[str, Image.Image, Image.Image, Path],
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_std
|
|
|
|
cn_name, condition_image, expected_image, cn_weights_path = controlnet_data
|
|
|
|
if not cn_weights_path.is_file():
|
|
warn(f"could not find weights at {cn_weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_inference_steps(30)
|
|
|
|
controlnet = SD1ControlnetAdapter(
|
|
sd15.unet, name=cn_name, scale=0.5, weights=load_from_safetensors(cn_weights_path)
|
|
).inject()
|
|
|
|
cn_condition = image_to_tensor(condition_image.convert("RGB"), device=test_device)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
controlnet.set_controlnet_condition(cn_condition)
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_controlnet_tile_upscale(
|
|
sd15_std: StableDiffusion_1,
|
|
controlnet_data_tile: tuple[Image.Image, Image.Image, Path],
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_std
|
|
|
|
condition_image, expected_image, cn_weights_path = controlnet_data_tile
|
|
|
|
controlnet: SD1ControlnetAdapter = SD1ControlnetAdapter(
|
|
sd15.unet, name="tile", scale=1.0, weights=load_from_safetensors(cn_weights_path)
|
|
).inject()
|
|
|
|
cn_condition = image_to_tensor(condition_image, device=test_device)
|
|
|
|
prompt = "best quality"
|
|
negative_prompt = "blur, lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
manual_seed(0)
|
|
x = sd15.init_latents((1024, 1024), condition_image).to(test_device)
|
|
|
|
for step in sd15.steps:
|
|
controlnet.set_controlnet_condition(cn_condition)
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
# Note: rather large tolerances are used on purpose here (loose comparison with diffusers' output)
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=24, min_ssim=0.75)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_controlnet_scale_decay(
|
|
sd15_std: StableDiffusion_1,
|
|
controlnet_data_scale_decay: tuple[str, Image.Image, Image.Image, Path],
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_std
|
|
|
|
cn_name, condition_image, expected_image, cn_weights_path = controlnet_data_scale_decay
|
|
|
|
if not cn_weights_path.is_file():
|
|
warn(f"could not find weights at {cn_weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_inference_steps(30)
|
|
|
|
# Using default value of 0.825 chosen by lvmin
|
|
# https://github.com/Mikubill/sd-webui-controlnet/blob/8e143d3545140b8f0398dfbe1d95a0a766019283/scripts/hook.py#L472
|
|
controlnet = SD1ControlnetAdapter(
|
|
sd15.unet, name=cn_name, scale=0.5, scale_decay=0.825, weights=load_from_safetensors(cn_weights_path)
|
|
).inject()
|
|
|
|
cn_condition = image_to_tensor(condition_image.convert("RGB"), device=test_device)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
controlnet.set_controlnet_condition(cn_condition)
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_controlnet_structural_copy(
|
|
sd15_std: StableDiffusion_1,
|
|
controlnet_data_canny: tuple[str, Image.Image, Image.Image, Path],
|
|
test_device: torch.device,
|
|
):
|
|
sd15_base = sd15_std
|
|
sd15 = sd15_base.structural_copy()
|
|
|
|
cn_name, condition_image, expected_image, cn_weights_path = controlnet_data_canny
|
|
|
|
if not cn_weights_path.is_file():
|
|
warn(f"could not find weights at {cn_weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_inference_steps(30)
|
|
|
|
controlnet = SD1ControlnetAdapter(
|
|
sd15.unet, name=cn_name, scale=0.5, weights=load_from_safetensors(cn_weights_path)
|
|
).inject()
|
|
|
|
cn_condition = image_to_tensor(condition_image.convert("RGB"), device=test_device)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
controlnet.set_controlnet_condition(cn_condition)
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_controlnet_float16(
|
|
sd15_std_float16: StableDiffusion_1,
|
|
controlnet_data_canny: tuple[str, Image.Image, Image.Image, Path],
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_std_float16
|
|
|
|
cn_name, condition_image, expected_image, cn_weights_path = controlnet_data_canny
|
|
|
|
if not cn_weights_path.is_file():
|
|
warn(f"could not find weights at {cn_weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_inference_steps(30)
|
|
|
|
controlnet = SD1ControlnetAdapter(
|
|
sd15.unet, name=cn_name, scale=0.5, weights=load_from_safetensors(cn_weights_path)
|
|
).inject()
|
|
|
|
cn_condition = image_to_tensor(condition_image.convert("RGB"), device=test_device, dtype=torch.float16)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device, dtype=torch.float16)
|
|
|
|
for step in sd15.steps:
|
|
controlnet.set_controlnet_condition(cn_condition)
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_controlnet_stack(
|
|
sd15_std: StableDiffusion_1,
|
|
controlnet_data_depth: tuple[str, Image.Image, Image.Image, Path],
|
|
controlnet_data_canny: tuple[str, Image.Image, Image.Image, Path],
|
|
expected_image_controlnet_stack: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_std
|
|
|
|
_, depth_condition_image, _, depth_cn_weights_path = controlnet_data_depth
|
|
_, canny_condition_image, _, canny_cn_weights_path = controlnet_data_canny
|
|
|
|
if not canny_cn_weights_path.is_file():
|
|
warn(f"could not find weights at {canny_cn_weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
if not depth_cn_weights_path.is_file():
|
|
warn(f"could not find weights at {depth_cn_weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_inference_steps(30)
|
|
|
|
depth_controlnet = SD1ControlnetAdapter(
|
|
sd15.unet, name="depth", scale=0.3, weights=load_from_safetensors(depth_cn_weights_path)
|
|
).inject()
|
|
canny_controlnet = SD1ControlnetAdapter(
|
|
sd15.unet, name="canny", scale=0.7, weights=load_from_safetensors(canny_cn_weights_path)
|
|
).inject()
|
|
|
|
depth_cn_condition = image_to_tensor(depth_condition_image.convert("RGB"), device=test_device)
|
|
canny_cn_condition = image_to_tensor(canny_condition_image.convert("RGB"), device=test_device)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
depth_controlnet.set_controlnet_condition(depth_cn_condition)
|
|
canny_controlnet.set_controlnet_condition(canny_cn_condition)
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_controlnet_stack, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_sdxl_control_lora(
|
|
controllora_sdxl_config: tuple[Image.Image, dict[str, ControlLoraResolvedConfig]],
|
|
sdxl_ddim_lda_fp16_fix: StableDiffusion_XL,
|
|
) -> None:
|
|
sdxl = sdxl_ddim_lda_fp16_fix.to(dtype=torch.float16)
|
|
sdxl.dtype = torch.float16 # FIXME: should not be necessary
|
|
|
|
expected_image = controllora_sdxl_config[0]
|
|
configs = controllora_sdxl_config[1]
|
|
|
|
adapters: dict[str, ControlLoraAdapter] = {}
|
|
for config_name, config in configs.items():
|
|
adapter = ControlLoraAdapter(
|
|
name=config_name,
|
|
scale=config.scale,
|
|
target=sdxl.unet,
|
|
weights=load_from_safetensors(
|
|
path=config.weights_path,
|
|
device=sdxl.device,
|
|
),
|
|
)
|
|
adapter.set_condition(
|
|
image_to_tensor(
|
|
image=config.condition_image,
|
|
device=sdxl.device,
|
|
dtype=sdxl.dtype,
|
|
)
|
|
)
|
|
adapters[config_name] = adapter
|
|
|
|
# inject all the control lora adapters
|
|
for adapter in adapters.values():
|
|
adapter.inject()
|
|
|
|
# compute the text embeddings
|
|
prompt = "a cute cat, flying in the air, detailed high-quality professional image, blank background"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality, watermarks"
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt,
|
|
negative_text=negative_prompt,
|
|
)
|
|
|
|
# initialize the latents
|
|
manual_seed(2)
|
|
x = torch.randn(
|
|
(1, 4, 128, 128),
|
|
device=sdxl.device,
|
|
dtype=sdxl.dtype,
|
|
)
|
|
|
|
# denoise
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=sdxl.default_time_ids,
|
|
)
|
|
|
|
# decode latent to image
|
|
predicted_image = sdxl.lda.decode_latents(x)
|
|
|
|
# ensure the predicted image is similar to the expected image
|
|
ensure_similar_images(
|
|
img_1=predicted_image,
|
|
img_2=expected_image,
|
|
min_psnr=35,
|
|
min_ssim=0.99,
|
|
)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_lora(
|
|
sd15_std: StableDiffusion_1,
|
|
lora_data_pokemon: tuple[Image.Image, dict[str, torch.Tensor]],
|
|
test_device: torch.device,
|
|
) -> None:
|
|
sd15 = sd15_std
|
|
|
|
expected_image, lora_weights = lora_data_pokemon
|
|
|
|
prompt = "a cute cat"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(prompt)
|
|
|
|
sd15.set_inference_steps(30)
|
|
|
|
SDLoraManager(sd15).add_loras("pokemon", lora_weights, scale=1)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_sdxl_batch2(sdxl_ddim: StableDiffusion_XL) -> None:
|
|
sdxl = sdxl_ddim
|
|
|
|
prompt1 = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt1 = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
prompt2 = "a cute dog"
|
|
negative_prompt2 = "lowres, bad anatomy, bad hands"
|
|
|
|
clip_text_embedding_b2, pooled_text_embedding_b2 = sdxl.compute_clip_text_embedding(
|
|
text=[prompt1, prompt2], negative_text=[negative_prompt1, negative_prompt2]
|
|
)
|
|
|
|
time_ids = sdxl.default_time_ids
|
|
time_ids_b2 = sdxl.default_time_ids.repeat(2, 1)
|
|
|
|
manual_seed(seed=2)
|
|
x_b2 = torch.randn(2, 4, 128, 128, device=sdxl.device, dtype=sdxl.dtype)
|
|
x_1 = x_b2[0:1]
|
|
x_2 = x_b2[1:2]
|
|
|
|
x_b2 = sdxl(
|
|
x_b2,
|
|
step=sdxl.steps[0],
|
|
clip_text_embedding=clip_text_embedding_b2,
|
|
pooled_text_embedding=pooled_text_embedding_b2,
|
|
time_ids=time_ids_b2,
|
|
)
|
|
|
|
clip_text_embedding_1, pooled_text_embedding_1 = sdxl.compute_clip_text_embedding(
|
|
text=prompt1, negative_text=negative_prompt1
|
|
)
|
|
|
|
x_1 = sdxl(
|
|
x_1,
|
|
step=sdxl.steps[0],
|
|
clip_text_embedding=clip_text_embedding_1,
|
|
pooled_text_embedding=pooled_text_embedding_1,
|
|
time_ids=time_ids,
|
|
)
|
|
|
|
clip_text_embedding_2, pooled_text_embedding_2 = sdxl.compute_clip_text_embedding(
|
|
text=prompt2, negative_text=negative_prompt2
|
|
)
|
|
|
|
x_2 = sdxl(
|
|
x_2,
|
|
step=sdxl.steps[0],
|
|
clip_text_embedding=clip_text_embedding_2,
|
|
pooled_text_embedding=pooled_text_embedding_2,
|
|
time_ids=time_ids,
|
|
)
|
|
|
|
# The 5e-3 tolerance is detailed in https://github.com/finegrain-ai/refiners/pull/263#issuecomment-1956404911
|
|
assert torch.allclose(
|
|
x_b2[0], x_1[0], atol=5e-3, rtol=0
|
|
), f"Batch 2 and batch1 output should be the same and are distant of {torch.max((x_b2[0] - x_1[0]).abs()).item()}"
|
|
assert torch.allclose(
|
|
x_b2[1], x_2[0], atol=5e-3, rtol=0
|
|
), f"Batch 2 and batch1 output should be the same and are distant of {torch.max((x_b2[1] - x_2[0]).abs()).item()}"
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_sdxl_lora(
|
|
sdxl_ddim: StableDiffusion_XL,
|
|
lora_data_dpo: tuple[Image.Image, dict[str, torch.Tensor]],
|
|
) -> None:
|
|
sdxl = sdxl_ddim
|
|
expected_image, lora_weights = lora_data_dpo
|
|
|
|
# parameters are the same as https://huggingface.co/radames/sdxl-DPO-LoRA
|
|
# except that we are using DDIM instead of sde-dpmsolver++
|
|
seed = 12341234123
|
|
guidance_scale = 7.5
|
|
lora_scale = 1.4
|
|
prompt = "professional portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography"
|
|
negative_prompt = "3d render, cartoon, drawing, art, low light, blur, pixelated, low resolution, black and white"
|
|
|
|
SDLoraManager(sdxl).add_loras("dpo", lora_weights, scale=lora_scale, unet_inclusions=["CrossAttentionBlock"])
|
|
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt, negative_text=negative_prompt
|
|
)
|
|
|
|
time_ids = sdxl.default_time_ids
|
|
sdxl.set_inference_steps(40)
|
|
|
|
manual_seed(seed=seed)
|
|
x = torch.randn(1, 4, 128, 128, device=sdxl.device, dtype=sdxl.dtype)
|
|
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
condition_scale=guidance_scale,
|
|
)
|
|
|
|
predicted_image = sdxl.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_sdxl_multiple_loras(
|
|
sdxl_ddim: StableDiffusion_XL,
|
|
lora_data_dpo: tuple[Image.Image, dict[str, torch.Tensor]],
|
|
lora_sliders: tuple[dict[str, dict[str, torch.Tensor]], dict[str, float]],
|
|
expected_sdxl_multi_loras: Image.Image,
|
|
) -> None:
|
|
sdxl = sdxl_ddim
|
|
expected_image = expected_sdxl_multi_loras
|
|
_, dpo_weights = lora_data_dpo
|
|
slider_loras, slider_scales = lora_sliders
|
|
|
|
manager = SDLoraManager(sdxl)
|
|
for lora_name, lora_weights in slider_loras.items():
|
|
manager.add_loras(
|
|
lora_name,
|
|
lora_weights,
|
|
slider_scales[lora_name],
|
|
unet_inclusions=["SelfAttention", "ResidualBlock", "Downsample", "Upsample"],
|
|
)
|
|
manager.add_loras("dpo", dpo_weights, 1.4, unet_inclusions=["CrossAttentionBlock"])
|
|
|
|
# parameters are the same as https://huggingface.co/radames/sdxl-DPO-LoRA
|
|
# except that we are using DDIM instead of sde-dpmsolver++
|
|
n_steps = 40
|
|
seed = 12341234123
|
|
guidance_scale = 4
|
|
prompt = "professional portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography"
|
|
negative_prompt = "3d render, cartoon, drawing, art, low light, blur, pixelated, low resolution, black and white"
|
|
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt, negative_text=negative_prompt
|
|
)
|
|
|
|
time_ids = sdxl.default_time_ids
|
|
sdxl.set_inference_steps(n_steps)
|
|
|
|
manual_seed(seed=seed)
|
|
x = torch.randn(1, 4, 128, 128, device=sdxl.device, dtype=sdxl.dtype)
|
|
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
condition_scale=guidance_scale,
|
|
)
|
|
|
|
predicted_image = sdxl.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_refonly(
|
|
sd15_ddim: StableDiffusion_1,
|
|
condition_image_refonly: Image.Image,
|
|
expected_image_refonly: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_ddim
|
|
|
|
prompt = "Chicken"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(prompt)
|
|
|
|
refonly_adapter = ReferenceOnlyControlAdapter(sd15.unet).inject()
|
|
|
|
guide = sd15.lda.image_to_latents(condition_image_refonly)
|
|
guide = torch.cat((guide, guide))
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
noise = torch.randn(2, 4, 64, 64, device=test_device)
|
|
noised_guide = sd15.solver.add_noise(guide, noise, step)
|
|
refonly_adapter.set_controlnet_condition(noised_guide)
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
torch.randn(2, 4, 64, 64, device=test_device) # for SD Web UI reproductibility only
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
# min_psnr lowered to 33 because this reference image was generated without noise removal (see #192)
|
|
ensure_similar_images(predicted_image, expected_image_refonly, min_psnr=33, min_ssim=0.99)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_inpainting_refonly(
|
|
sd15_inpainting: StableDiffusion_1_Inpainting,
|
|
scene_image_inpainting_refonly: Image.Image,
|
|
target_image_inpainting_refonly: Image.Image,
|
|
mask_image_inpainting_refonly: Image.Image,
|
|
expected_image_inpainting_refonly: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_inpainting
|
|
|
|
prompt = "" # unconditional
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(prompt)
|
|
|
|
refonly_adapter = ReferenceOnlyControlAdapter(sd15.unet).inject()
|
|
|
|
sd15.set_inference_steps(30)
|
|
sd15.set_inpainting_conditions(target_image_inpainting_refonly, mask_image_inpainting_refonly)
|
|
|
|
guide = sd15.lda.image_to_latents(scene_image_inpainting_refonly)
|
|
guide = torch.cat((guide, guide))
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
noise = torch.randn_like(guide)
|
|
noised_guide = sd15.solver.add_noise(guide, noise, step)
|
|
# See https://github.com/Mikubill/sd-webui-controlnet/pull/1275 ("1.1.170 reference-only begin to support
|
|
# inpaint variation models")
|
|
noised_guide = torch.cat([noised_guide, torch.zeros_like(noised_guide)[:, 0:1, :, :], guide], dim=1)
|
|
|
|
refonly_adapter.set_controlnet_condition(noised_guide)
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_inpainting_refonly, min_psnr=35, min_ssim=0.99)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_textual_inversion_random_init(
|
|
sd15_std: StableDiffusion_1,
|
|
expected_image_textual_inversion_random_init: Image.Image,
|
|
text_embedding_textual_inversion: torch.Tensor,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_std
|
|
|
|
conceptExtender = ConceptExtender(sd15.clip_text_encoder)
|
|
conceptExtender.add_concept("<gta5-artwork>", text_embedding_textual_inversion)
|
|
conceptExtender.inject()
|
|
|
|
prompt = "a cute cat on a <gta5-artwork>"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(prompt)
|
|
|
|
sd15.set_inference_steps(30)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_textual_inversion_random_init, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_ip_adapter(
|
|
sd15_ddim_lda_ft_mse: StableDiffusion_1,
|
|
ip_adapter_weights: Path,
|
|
image_encoder_weights: Path,
|
|
woman_image: Image.Image,
|
|
expected_image_ip_adapter_woman: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_ddim_lda_ft_mse.to(dtype=torch.float16)
|
|
|
|
# See tencent-ailab/IP-Adapter best practices section:
|
|
#
|
|
# If you only use the image prompt, you can set the scale=1.0 and text_prompt="" (or some generic text
|
|
# prompts, e.g. "best quality", you can also use any negative text prompt).
|
|
#
|
|
# The prompts below are the ones used by default by IPAdapter's generate method if none are specified
|
|
prompt = "best quality, high quality"
|
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
|
|
|
ip_adapter = SD1IPAdapter(target=sd15.unet, weights=load_from_safetensors(ip_adapter_weights))
|
|
ip_adapter.clip_image_encoder.load_from_safetensors(image_encoder_weights)
|
|
ip_adapter.inject()
|
|
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
clip_image_embedding = ip_adapter.compute_clip_image_embedding(ip_adapter.preprocess_image(woman_image))
|
|
ip_adapter.set_clip_image_embedding(clip_image_embedding)
|
|
|
|
sd15.set_inference_steps(50)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device, dtype=torch.float16)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_ip_adapter_woman)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_ip_adapter_multi(
|
|
sd15_ddim_lda_ft_mse: StableDiffusion_1,
|
|
ip_adapter_weights: Path,
|
|
image_encoder_weights: Path,
|
|
woman_image: Image.Image,
|
|
statue_image: Image.Image,
|
|
expected_image_ip_adapter_multi: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_ddim_lda_ft_mse.to(dtype=torch.float16)
|
|
|
|
prompt = "best quality, high quality"
|
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
|
|
|
ip_adapter = SD1IPAdapter(target=sd15.unet, weights=load_from_safetensors(ip_adapter_weights))
|
|
ip_adapter.clip_image_encoder.load_from_safetensors(image_encoder_weights)
|
|
ip_adapter.inject()
|
|
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
clip_image_embedding = ip_adapter.compute_clip_image_embedding([woman_image, statue_image], weights=[1.0, 1.4])
|
|
ip_adapter.set_clip_image_embedding(clip_image_embedding)
|
|
|
|
sd15.set_inference_steps(50)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device, dtype=torch.float16)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.decode_latents(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_ip_adapter_multi)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_sdxl_ip_adapter(
|
|
sdxl_ddim: StableDiffusion_XL,
|
|
sdxl_ip_adapter_weights: Path,
|
|
image_encoder_weights: Path,
|
|
woman_image: Image.Image,
|
|
expected_image_sdxl_ip_adapter_woman: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sdxl = sdxl_ddim.to(dtype=torch.float16)
|
|
|
|
prompt = "best quality, high quality"
|
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
|
|
|
ip_adapter = SDXLIPAdapter(target=sdxl.unet, weights=load_from_safetensors(sdxl_ip_adapter_weights))
|
|
ip_adapter.clip_image_encoder.load_from_safetensors(image_encoder_weights)
|
|
ip_adapter.inject()
|
|
|
|
with no_grad():
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt, negative_text=negative_prompt
|
|
)
|
|
clip_image_embedding = ip_adapter.compute_clip_image_embedding(ip_adapter.preprocess_image(woman_image))
|
|
ip_adapter.set_clip_image_embedding(clip_image_embedding)
|
|
|
|
time_ids = sdxl.default_time_ids
|
|
sdxl.set_inference_steps(30)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 128, 128, device=test_device, dtype=torch.float16)
|
|
|
|
with no_grad():
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
condition_scale=5,
|
|
)
|
|
# See https://huggingface.co/madebyollin/sdxl-vae-fp16-fix: "SDXL-VAE generates NaNs in fp16 because the
|
|
# internal activation values are too big"
|
|
sdxl.lda.to(dtype=torch.float32)
|
|
predicted_image = sdxl.lda.latents_to_image(x.to(dtype=torch.float32))
|
|
|
|
ensure_similar_images(predicted_image, expected_image_sdxl_ip_adapter_woman)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_ip_adapter_controlnet(
|
|
sd15_ddim: StableDiffusion_1,
|
|
ip_adapter_weights: Path,
|
|
image_encoder_weights: Path,
|
|
lora_data_pokemon: tuple[Image.Image, Path],
|
|
controlnet_data_depth: tuple[str, Image.Image, Image.Image, Path],
|
|
expected_image_ip_adapter_controlnet: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_ddim.to(dtype=torch.float16)
|
|
input_image, _ = lora_data_pokemon # use the Pokemon LoRA output as input
|
|
_, depth_condition_image, _, depth_cn_weights_path = controlnet_data_depth
|
|
|
|
prompt = "best quality, high quality"
|
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
|
|
|
ip_adapter = SD1IPAdapter(target=sd15.unet, weights=load_from_safetensors(ip_adapter_weights))
|
|
ip_adapter.clip_image_encoder.load_from_safetensors(image_encoder_weights)
|
|
ip_adapter.inject()
|
|
|
|
depth_controlnet = SD1ControlnetAdapter(
|
|
sd15.unet,
|
|
name="depth",
|
|
scale=1.0,
|
|
weights=load_from_safetensors(depth_cn_weights_path),
|
|
).inject()
|
|
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
clip_image_embedding = ip_adapter.compute_clip_image_embedding(ip_adapter.preprocess_image(input_image))
|
|
ip_adapter.set_clip_image_embedding(clip_image_embedding)
|
|
|
|
depth_cn_condition = image_to_tensor(
|
|
depth_condition_image.convert("RGB"),
|
|
device=test_device,
|
|
dtype=torch.float16,
|
|
)
|
|
|
|
sd15.set_inference_steps(50)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device, dtype=torch.float16)
|
|
|
|
for step in sd15.steps:
|
|
depth_controlnet.set_controlnet_condition(depth_cn_condition)
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_ip_adapter_controlnet)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_ip_adapter_plus(
|
|
sd15_ddim_lda_ft_mse: StableDiffusion_1,
|
|
ip_adapter_plus_weights: Path,
|
|
image_encoder_weights: Path,
|
|
statue_image: Image.Image,
|
|
expected_image_ip_adapter_plus_statue: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_ddim_lda_ft_mse.to(dtype=torch.float16)
|
|
|
|
prompt = "best quality, high quality"
|
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
|
|
|
ip_adapter = SD1IPAdapter(
|
|
target=sd15.unet, weights=load_from_safetensors(ip_adapter_plus_weights), fine_grained=True
|
|
)
|
|
ip_adapter.clip_image_encoder.load_from_safetensors(image_encoder_weights)
|
|
ip_adapter.inject()
|
|
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
clip_image_embedding = ip_adapter.compute_clip_image_embedding(ip_adapter.preprocess_image(statue_image))
|
|
ip_adapter.set_clip_image_embedding(clip_image_embedding)
|
|
|
|
sd15.set_inference_steps(50)
|
|
|
|
manual_seed(42) # seed=42 is used in the official IP-Adapter demo
|
|
x = torch.randn(1, 4, 64, 64, device=test_device, dtype=torch.float16)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image_ip_adapter_plus_statue, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_sdxl_ip_adapter_plus(
|
|
sdxl_ddim: StableDiffusion_XL,
|
|
sdxl_ip_adapter_plus_weights: Path,
|
|
image_encoder_weights: Path,
|
|
woman_image: Image.Image,
|
|
expected_image_sdxl_ip_adapter_plus_woman: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sdxl = sdxl_ddim.to(dtype=torch.float16)
|
|
|
|
prompt = "best quality, high quality"
|
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
|
|
|
ip_adapter = SDXLIPAdapter(
|
|
target=sdxl.unet, weights=load_from_safetensors(sdxl_ip_adapter_plus_weights), fine_grained=True
|
|
)
|
|
ip_adapter.clip_image_encoder.load_from_safetensors(image_encoder_weights)
|
|
ip_adapter.inject()
|
|
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt, negative_text=negative_prompt
|
|
)
|
|
clip_image_embedding = ip_adapter.compute_clip_image_embedding(ip_adapter.preprocess_image(woman_image))
|
|
ip_adapter.set_clip_image_embedding(clip_image_embedding)
|
|
|
|
time_ids = sdxl.default_time_ids
|
|
sdxl.set_inference_steps(30)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 128, 128, device=test_device, dtype=torch.float16)
|
|
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
condition_scale=5,
|
|
)
|
|
sdxl.lda.to(dtype=torch.float32)
|
|
predicted_image = sdxl.lda.latents_to_image(x.to(dtype=torch.float32))
|
|
|
|
ensure_similar_images(predicted_image, expected_image_sdxl_ip_adapter_plus_woman)
|
|
|
|
|
|
@no_grad()
|
|
@pytest.mark.parametrize("structural_copy", [False, True])
|
|
def test_diffusion_sdxl_random_init(
|
|
sdxl_ddim: StableDiffusion_XL,
|
|
expected_sdxl_ddim_random_init: Image.Image,
|
|
test_device: torch.device,
|
|
structural_copy: bool,
|
|
) -> None:
|
|
sdxl = sdxl_ddim.structural_copy() if structural_copy else sdxl_ddim
|
|
expected_image = expected_sdxl_ddim_random_init
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt, negative_text=negative_prompt
|
|
)
|
|
time_ids = sdxl.default_time_ids
|
|
|
|
sdxl.set_inference_steps(30)
|
|
|
|
manual_seed(seed=2)
|
|
x = torch.randn(1, 4, 128, 128, device=test_device)
|
|
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
condition_scale=5,
|
|
)
|
|
predicted_image = sdxl.lda.latents_to_image(x=x)
|
|
|
|
ensure_similar_images(img_1=predicted_image, img_2=expected_image, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_sdxl_random_init_sag(
|
|
sdxl_ddim: StableDiffusion_XL, expected_sdxl_ddim_random_init_sag: Image.Image, test_device: torch.device
|
|
) -> None:
|
|
sdxl = sdxl_ddim
|
|
expected_image = expected_sdxl_ddim_random_init_sag
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt, negative_text=negative_prompt
|
|
)
|
|
time_ids = sdxl.default_time_ids
|
|
|
|
sdxl.set_inference_steps(30)
|
|
sdxl.set_self_attention_guidance(enable=True, scale=0.75)
|
|
|
|
manual_seed(seed=2)
|
|
x = torch.randn(1, 4, 128, 128, device=test_device)
|
|
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
condition_scale=5,
|
|
)
|
|
predicted_image = sdxl.lda.latents_to_image(x=x)
|
|
|
|
ensure_similar_images(img_1=predicted_image, img_2=expected_image)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_sdxl_sliced_attention(
|
|
sdxl_ddim: StableDiffusion_XL, expected_sdxl_ddim_random_init: Image.Image
|
|
) -> None:
|
|
unet = sdxl_ddim.unet.structural_copy()
|
|
for layer in unet.layers(ScaledDotProductAttention):
|
|
layer.slice_size = 2048
|
|
|
|
sdxl = StableDiffusion_XL(
|
|
unet=unet,
|
|
lda=sdxl_ddim.lda,
|
|
clip_text_encoder=sdxl_ddim.clip_text_encoder,
|
|
solver=sdxl_ddim.solver,
|
|
device=sdxl_ddim.device,
|
|
dtype=sdxl_ddim.dtype,
|
|
)
|
|
|
|
expected_image = expected_sdxl_ddim_random_init
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt, negative_text=negative_prompt
|
|
)
|
|
time_ids = sdxl.default_time_ids
|
|
sdxl.set_inference_steps(30)
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 128, 128, device=sdxl.device, dtype=sdxl.dtype)
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
condition_scale=5,
|
|
)
|
|
|
|
predicted_image = sdxl.lda.decode_latents(x)
|
|
ensure_similar_images(predicted_image, expected_image, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
def test_diffusion_sdxl_euler_deterministic(
|
|
sdxl_euler_deterministic: StableDiffusion_XL, expected_sdxl_euler_random_init: Image.Image
|
|
) -> None:
|
|
sdxl = sdxl_euler_deterministic
|
|
assert isinstance(sdxl.solver, Euler)
|
|
|
|
expected_image = expected_sdxl_euler_random_init
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt, negative_text=negative_prompt
|
|
)
|
|
time_ids = sdxl.default_time_ids
|
|
sdxl.set_inference_steps(30)
|
|
manual_seed(2)
|
|
x = sdxl.init_latents((1024, 1024)).to(sdxl.device, sdxl.dtype)
|
|
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
condition_scale=5,
|
|
)
|
|
|
|
predicted_image = sdxl.lda.decode_latents(x)
|
|
ensure_similar_images(predicted_image, expected_image)
|
|
|
|
|
|
@no_grad()
|
|
def test_multi_diffusion(sd15_ddim: StableDiffusion_1, expected_multi_diffusion: Image.Image) -> None:
|
|
manual_seed(seed=2)
|
|
sd = sd15_ddim
|
|
multi_diffusion = SD1MultiDiffusion(sd)
|
|
clip_text_embedding = sd.compute_clip_text_embedding(text="a panorama of a mountain")
|
|
target_1 = DiffusionTarget(
|
|
size=(64, 64),
|
|
offset=(0, 0),
|
|
clip_text_embedding=clip_text_embedding,
|
|
start_step=0,
|
|
)
|
|
target_2 = DiffusionTarget(
|
|
size=(64, 64),
|
|
offset=(0, 16),
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=3,
|
|
start_step=0,
|
|
)
|
|
noise = torch.randn(1, 4, 64, 80, device=sd.device, dtype=sd.dtype)
|
|
x = noise
|
|
for step in sd.steps:
|
|
x = multi_diffusion(
|
|
x,
|
|
noise=noise,
|
|
step=step,
|
|
targets=[target_1, target_2],
|
|
)
|
|
result = sd.lda.latents_to_image(x=x)
|
|
ensure_similar_images(img_1=result, img_2=expected_multi_diffusion, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
def test_t2i_adapter_depth(
|
|
sd15_std: StableDiffusion_1,
|
|
t2i_adapter_data_depth: tuple[str, Image.Image, Image.Image, Path],
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_std
|
|
|
|
name, condition_image, expected_image, weights_path = t2i_adapter_data_depth
|
|
|
|
if not weights_path.is_file():
|
|
warn(f"could not find weights at {weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_inference_steps(30)
|
|
|
|
t2i_adapter = SD1T2IAdapter(target=sd15.unet, name=name, weights=load_from_safetensors(weights_path)).inject()
|
|
|
|
condition = image_to_tensor(condition_image.convert("RGB"), device=test_device)
|
|
t2i_adapter.set_condition_features(features=t2i_adapter.compute_condition_features(condition))
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image)
|
|
|
|
|
|
@no_grad()
|
|
def test_t2i_adapter_xl_canny(
|
|
sdxl_ddim: StableDiffusion_XL,
|
|
t2i_adapter_xl_data_canny: tuple[str, Image.Image, Image.Image, Path],
|
|
test_device: torch.device,
|
|
):
|
|
sdxl = sdxl_ddim
|
|
|
|
name, condition_image, expected_image, weights_path = t2i_adapter_xl_data_canny
|
|
|
|
if not weights_path.is_file():
|
|
warn(f"could not find weights at {weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
prompt = "Mystical fairy in real, magic, 4k picture, high quality"
|
|
negative_prompt = (
|
|
"extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured"
|
|
)
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=prompt, negative_text=negative_prompt
|
|
)
|
|
time_ids = sdxl.default_time_ids
|
|
|
|
sdxl.set_inference_steps(30)
|
|
|
|
t2i_adapter = SDXLT2IAdapter(target=sdxl.unet, name=name, weights=load_from_safetensors(weights_path)).inject()
|
|
t2i_adapter.scale = 0.8
|
|
|
|
condition = image_to_tensor(condition_image.convert("RGB"), device=test_device)
|
|
t2i_adapter.set_condition_features(features=t2i_adapter.compute_condition_features(condition))
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, condition_image.height // 8, condition_image.width // 8, device=test_device)
|
|
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sdxl.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image)
|
|
|
|
|
|
@no_grad()
|
|
def test_restart(
|
|
sd15_ddim: StableDiffusion_1,
|
|
expected_restart: Image.Image,
|
|
test_device: torch.device,
|
|
):
|
|
sd15 = sd15_ddim
|
|
|
|
prompt = "a cute cat, detailed high-quality professional image"
|
|
negative_prompt = "lowres, bad anatomy, bad hands, cropped, worst quality"
|
|
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_inference_steps(30)
|
|
restart = Restart(ldm=sd15)
|
|
|
|
manual_seed(2)
|
|
x = torch.randn(1, 4, 64, 64, device=test_device)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=8,
|
|
)
|
|
|
|
if step == restart.start_step:
|
|
x = restart(
|
|
x,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=8,
|
|
)
|
|
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_restart, min_psnr=35, min_ssim=0.98)
|
|
|
|
|
|
@no_grad()
|
|
def test_freeu(
|
|
sd15_std: StableDiffusion_1,
|
|
expected_freeu: Image.Image,
|
|
):
|
|
sd15 = sd15_std
|
|
|
|
prompt = "best quality, high quality cute cat"
|
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
|
clip_text_embedding = sd15.compute_clip_text_embedding(text=prompt, negative_text=negative_prompt)
|
|
|
|
sd15.set_inference_steps(50, first_step=1)
|
|
|
|
SDFreeUAdapter(
|
|
sd15.unet, backbone_scales=[1.2, 1.2, 1.2, 1.4, 1.4, 1.4], skip_scales=[0.9, 0.9, 0.9, 0.2, 0.2, 0.2]
|
|
).inject()
|
|
|
|
manual_seed(9752)
|
|
x = sd15.init_latents((512, 512)).to(device=sd15.device, dtype=sd15.dtype)
|
|
|
|
for step in sd15.steps:
|
|
x = sd15(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
condition_scale=7.5,
|
|
)
|
|
predicted_image = sd15.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_freeu)
|
|
|
|
|
|
@no_grad()
|
|
def test_hello_world(
|
|
sdxl_ddim_lda_fp16_fix: StableDiffusion_XL,
|
|
t2i_adapter_xl_data_canny: tuple[str, Image.Image, Image.Image, Path],
|
|
sdxl_ip_adapter_weights: Path,
|
|
image_encoder_weights: Path,
|
|
hello_world_assets: tuple[Image.Image, Image.Image, Image.Image, Image.Image],
|
|
) -> None:
|
|
sdxl = sdxl_ddim_lda_fp16_fix.to(dtype=torch.float16)
|
|
sdxl.dtype = torch.float16 # FIXME: should not be necessary
|
|
|
|
name, _, _, weights_path = t2i_adapter_xl_data_canny
|
|
init_image, image_prompt, condition_image, expected_image = hello_world_assets
|
|
|
|
if not weights_path.is_file():
|
|
warn(f"could not find weights at {weights_path}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
|
|
ip_adapter = SDXLIPAdapter(target=sdxl.unet, weights=load_from_safetensors(sdxl_ip_adapter_weights))
|
|
ip_adapter.clip_image_encoder.load_from_safetensors(image_encoder_weights)
|
|
ip_adapter.inject()
|
|
|
|
image_embedding = ip_adapter.compute_clip_image_embedding(ip_adapter.preprocess_image(image_prompt))
|
|
ip_adapter.set_clip_image_embedding(image_embedding)
|
|
|
|
# Note: default text prompts for IP-Adapter
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text="best quality, high quality", negative_text="monochrome, lowres, bad anatomy, worst quality, low quality"
|
|
)
|
|
time_ids = sdxl.default_time_ids
|
|
|
|
t2i_adapter = SDXLT2IAdapter(target=sdxl.unet, name=name, weights=load_from_safetensors(weights_path)).inject()
|
|
|
|
condition = image_to_tensor(condition_image.convert("RGB"), device=sdxl.device, dtype=sdxl.dtype)
|
|
t2i_adapter.set_condition_features(features=t2i_adapter.compute_condition_features(condition))
|
|
|
|
ip_adapter.scale = 0.85
|
|
t2i_adapter.scale = 0.8
|
|
sdxl.set_inference_steps(50, first_step=1)
|
|
sdxl.set_self_attention_guidance(enable=True, scale=0.75)
|
|
|
|
manual_seed(9752)
|
|
x = sdxl.init_latents(size=(1024, 1024), init_image=init_image).to(device=sdxl.device, dtype=sdxl.dtype)
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
)
|
|
predicted_image = sdxl.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image)
|
|
|
|
|
|
@no_grad()
|
|
def test_style_aligned(
|
|
sdxl_ddim_lda_fp16_fix: StableDiffusion_XL,
|
|
expected_style_aligned: Image.Image,
|
|
):
|
|
sdxl = sdxl_ddim_lda_fp16_fix.to(dtype=torch.float16)
|
|
sdxl.dtype = torch.float16 # FIXME: should not be necessary
|
|
|
|
style_aligned_adapter = StyleAlignedAdapter(sdxl.unet)
|
|
style_aligned_adapter.inject()
|
|
|
|
set_of_prompts = [
|
|
"a toy train. macro photo. 3d game asset",
|
|
"a toy airplane. macro photo. 3d game asset",
|
|
"a toy bicycle. macro photo. 3d game asset",
|
|
"a toy car. macro photo. 3d game asset",
|
|
"a toy boat. macro photo. 3d game asset",
|
|
]
|
|
|
|
# create (context) embeddings from prompts
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(
|
|
text=set_of_prompts, negative_text=[""] * len(set_of_prompts)
|
|
)
|
|
|
|
time_ids = sdxl.default_time_ids.repeat(len(set_of_prompts), 1)
|
|
|
|
# initialize latents
|
|
manual_seed(seed=2)
|
|
x = torch.randn(
|
|
(len(set_of_prompts), 4, 128, 128),
|
|
device=sdxl.device,
|
|
dtype=sdxl.dtype,
|
|
)
|
|
|
|
# denoise
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
)
|
|
|
|
# decode latents
|
|
predicted_images = [sdxl.lda.decode_latents(latent.unsqueeze(0)) for latent in x]
|
|
|
|
# tile all images horizontally
|
|
merged_image = Image.new("RGB", (1024 * len(predicted_images), 1024))
|
|
for i in range(len(predicted_images)):
|
|
merged_image.paste(predicted_images[i], (i * 1024, 0)) # type: ignore
|
|
|
|
# compare against reference image
|
|
ensure_similar_images(merged_image, expected_style_aligned, min_psnr=35, min_ssim=0.99)
|