refiners/scripts/convert-informative-drawings-weights.py
2023-08-17 14:44:45 +02:00

58 lines
2 KiB
Python

# Original weights can be found here: https://huggingface.co/spaces/carolineec/informativedrawings
# Code is at https://github.com/carolineec/informative-drawings
# Copy `model.py` in your `PYTHONPATH`. You can edit it to remove un-necessary code
# and imports if you want, we only need `Generator`.
import torch
from refiners.fluxion.utils import create_state_dict_mapping, convert_state_dict, save_to_safetensors
from refiners.foundationals.latent_diffusion.preprocessors.informative_drawings import InformativeDrawings
from model import Generator # type: ignore
@torch.no_grad()
def convert(checkpoint: str, device: torch.device | str) -> dict[str, torch.Tensor]:
src_model = Generator(3, 1, 3) # type: ignore
src_model.load_state_dict(torch.load(checkpoint, map_location=device)) # type: ignore
src_model.eval() # type: ignore
dst_model = InformativeDrawings()
x = torch.randn(1, 3, 512, 512)
mapping = create_state_dict_mapping(source_model=src_model, target_model=dst_model, source_args=[x]) # type: ignore
assert mapping is not None, "Model conversion failed"
state_dict = convert_state_dict(source_state_dict=src_model.state_dict(), target_state_dict=dst_model.state_dict(), state_dict_mapping=mapping) # type: ignore
return {k: v.half() for k, v in state_dict.items()}
def main() -> None:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--from",
type=str,
dest="source",
required=False,
default="model2.pth",
help="Source model",
)
parser.add_argument(
"--output-file",
type=str,
required=False,
default="informative-drawings.safetensors",
help="Path for the output file",
)
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
tensors = convert(checkpoint=args.source, device=device)
save_to_safetensors(path=args.output_file, tensors=tensors)
if __name__ == "__main__":
main()