refiners/tests/training_utils/test_trainer.py
2024-05-09 10:53:58 +02:00

337 lines
10 KiB
Python

import random
import warnings
from dataclasses import dataclass
from pathlib import Path
from typing import cast
import pytest
import torch
from pydantic import field_validator
from torch import Tensor, nn
from torch.optim import SGD
from refiners.fluxion import layers as fl
from refiners.fluxion.utils import norm
from refiners.training_utils.callback import Callback, CallbackConfig
from refiners.training_utils.clock import ClockConfig
from refiners.training_utils.common import (
Epoch,
Iteration,
Step,
TimeValue,
TimeValueInput,
count_learnable_parameters,
human_readable_number,
parse_number_unit_field,
scoped_seed,
)
from refiners.training_utils.config import BaseConfig, ModelConfig
from refiners.training_utils.data_loader import DataloaderConfig, create_data_loader
from refiners.training_utils.trainer import (
Trainer,
TrainingClock,
WarmupScheduler,
count_learnable_parameters,
human_readable_number,
register_callback,
register_model,
)
@dataclass
class MockBatch:
inputs: torch.Tensor
targets: torch.Tensor
class MockModelConfig(ModelConfig):
use_activation: bool
class MockCallbackConfig(CallbackConfig):
on_batch_end_interval: Step | Iteration | Epoch
on_batch_end_seed: int
on_optimizer_step_interval: Iteration | Epoch
@field_validator("on_batch_end_interval", "on_optimizer_step_interval", mode="before")
def parse_field(cls, value: TimeValueInput) -> TimeValue:
return parse_number_unit_field(value)
class MockConfig(BaseConfig):
# we register the `early_callback` before the `clock` callback to test the callback ordering
early_callback: CallbackConfig = CallbackConfig()
clock: ClockConfig = ClockConfig()
mock_model: MockModelConfig
mock_callback: MockCallbackConfig
data_loader: DataloaderConfig
class MockModel(fl.Chain):
def __init__(self):
super().__init__(
fl.Linear(10, 10),
fl.Linear(10, 10),
fl.Linear(10, 10),
)
def add_activation(self) -> None:
self.insert(1, fl.SiLU())
self.insert(3, fl.SiLU())
class MockCallback(Callback["MockTrainer"]):
def __init__(self, config: MockCallbackConfig) -> None:
self.config = config
self.optimizer_step_count = 0
self.step_end_count = 0
self.optimizer_step_random_int: int | None = None
self.step_end_random_int: int | None = None
def on_init_begin(self, trainer: "MockTrainer") -> None:
pass
def on_optimizer_step_begin(self, trainer: "MockTrainer") -> None:
if not trainer.clock.is_due(self.config.on_optimizer_step_interval):
return
self.optimizer_step_count += 1
self.optimizer_step_random_int = random.randint(0, 100)
def on_step_end(self, trainer: "MockTrainer") -> None:
if not trainer.clock.is_due(self.config.on_batch_end_interval):
return
# We verify that this callback is always called before the clock is updated (see `_call_callbacks` in trainer.py)
assert trainer.clock.step // 3 <= self.step_end_count
self.step_end_count += 1
with scoped_seed(self.config.on_batch_end_seed):
self.step_end_random_int = random.randint(0, 100)
class EarlyMockCallback(Callback["MockTrainer"]):
"""
A callback that will be registered before the Clock callback to test the callback ordering.
"""
def on_train_begin(self, trainer: "MockTrainer") -> None:
assert trainer.clock.start_time is not None, "Clock callback should have been called before this callback."
class MockTrainer(Trainer[MockConfig, MockBatch]):
step_counter: int = 0
model_registration_counter: int = 0
@property
def dataset_length(self) -> int:
return 20
def get_item(self, index: int) -> MockBatch:
return MockBatch(inputs=torch.randn(1, 10), targets=torch.randn(1, 10))
def collate_fn(self, batch: list[MockBatch]) -> MockBatch:
return MockBatch(
inputs=torch.cat([b.inputs for b in batch]),
targets=torch.cat([b.targets for b in batch]),
)
def create_data_iterable(self):
return create_data_loader(
get_item=self.get_item,
length=self.dataset_length,
config=self.config.data_loader,
collate_fn=self.collate_fn,
)
@register_callback()
def early_callback(self, config: CallbackConfig) -> EarlyMockCallback:
return EarlyMockCallback()
@register_callback()
def mock_callback(self, config: MockCallbackConfig) -> MockCallback:
return MockCallback(config)
@register_model()
def mock_model(self, config: MockModelConfig) -> MockModel:
model = MockModel()
if config.use_activation:
model.add_activation()
self.model_registration_counter += 1
return model
def compute_loss(self, batch: MockBatch) -> Tensor:
self.step_counter += 1
inputs, targets = batch.inputs.to(self.device), batch.targets.to(self.device)
outputs = self.mock_model(inputs)
return norm(outputs - targets)
@pytest.fixture
def mock_config() -> MockConfig:
config = MockConfig.load_from_toml(Path(__file__).parent / "mock_config.toml")
return config
@pytest.fixture
def mock_trainer(mock_config: MockConfig) -> MockTrainer:
return MockTrainer(config=mock_config)
@pytest.fixture
def mock_trainer_short(mock_config: MockConfig) -> MockTrainer:
mock_config_short = mock_config.model_copy(deep=True)
mock_config_short.training.duration = Step(3)
return MockTrainer(config=mock_config_short)
@pytest.fixture
def mock_model() -> fl.Chain:
return MockModel()
def test_count_learnable_parameters_with_params() -> None:
params = [
nn.Parameter(torch.randn(2, 2), requires_grad=True),
nn.Parameter(torch.randn(5), requires_grad=False),
nn.Parameter(torch.randn(3, 3), requires_grad=True),
]
# cast because of PyTorch 2.2, see https://github.com/pytorch/pytorch/issues/118736
assert count_learnable_parameters(cast(list[nn.Parameter], params)) == 13
def test_count_learnable_parameters_with_model(mock_model: fl.Chain) -> None:
assert count_learnable_parameters(mock_model.parameters()) == 330
def test_human_readable_number() -> None:
assert human_readable_number(123) == "123.0"
assert human_readable_number(1234) == "1.2K"
assert human_readable_number(1234567) == "1.2M"
@pytest.fixture
def training_clock() -> TrainingClock:
return TrainingClock(
training_duration=Epoch(5),
gradient_accumulation=Step(1),
lr_scheduler_interval=Epoch(1),
)
def test_timer_functionality(training_clock: TrainingClock) -> None:
training_clock.start_timer()
assert training_clock.start_time is not None
training_clock.stop_timer()
assert training_clock.end_time is not None
assert training_clock.time_elapsed >= 0
def test_mock_trainer_initialization(mock_config: MockConfig, mock_trainer: MockTrainer) -> None:
assert mock_trainer.config == mock_config
assert isinstance(mock_trainer, MockTrainer)
assert mock_trainer.optimizer is not None
assert mock_trainer.lr_scheduler is not None
assert mock_trainer.model_registration_counter == 1
def test_training_cycle(mock_trainer: MockTrainer) -> None:
clock = mock_trainer.clock
config = mock_trainer.config
assert mock_trainer.step_counter == 0
assert clock.epoch == 0
mock_trainer.train()
assert clock.epoch == config.training.duration.number
assert mock_trainer.step_counter == mock_trainer.clock.step
def test_callback_registration(mock_trainer: MockTrainer) -> None:
mock_trainer.train()
# Check that the callback skips every other iteration
assert mock_trainer.mock_callback.optimizer_step_count == mock_trainer.clock.iteration // 2
assert mock_trainer.mock_callback.step_end_count == mock_trainer.clock.step // 3 + 1
# Check that the random seed was set
assert mock_trainer.mock_callback.optimizer_step_random_int == 93
assert mock_trainer.mock_callback.step_end_random_int == 81
def test_training_short_cycle(mock_trainer_short: MockTrainer) -> None:
clock = mock_trainer_short.clock
config = mock_trainer_short.config
assert mock_trainer_short.step_counter == 0
assert mock_trainer_short.clock.epoch == 0
mock_trainer_short.train()
assert clock.step == config.training.duration.number
@pytest.fixture
def warmup_scheduler():
optimizer = SGD([nn.Parameter(torch.randn(2, 2), requires_grad=True)], lr=0.1)
scheduler = torch.optim.lr_scheduler.ConstantLR(optimizer, 1)
return WarmupScheduler(optimizer, scheduler, warmup_scheduler_steps=100)
def test_initial_lr(warmup_scheduler: WarmupScheduler) -> None:
optimizer = warmup_scheduler.optimizer
for group in optimizer.param_groups:
assert group["lr"] == 1e-3
def test_warmup_lr(warmup_scheduler: WarmupScheduler) -> None:
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
category=UserWarning,
message=r"Detected call of `lr_scheduler.step\(\)` before `optimizer.step\(\)`",
)
for _ in range(102):
warmup_scheduler.step()
optimizer = warmup_scheduler.optimizer
for group in optimizer.param_groups:
assert group["lr"] == 0.1
class MockTrainerWith2Models(MockTrainer):
@register_model()
def mock_model1(self, config: ModelConfig) -> MockModel:
return MockModel()
@register_model()
def mock_model2(self, config: ModelConfig) -> MockModel:
return MockModel()
def compute_loss(self, batch: MockBatch) -> Tensor:
self.step_counter += 1
inputs, targets = batch.inputs.to(self.device), batch.targets.to(self.device)
outputs = self.mock_model2(self.mock_model1(inputs))
return norm(outputs - targets)
class MockConfig_2_Models(BaseConfig):
mock_model1: ModelConfig
mock_model2: ModelConfig
@pytest.fixture
def mock_config_2_models() -> MockConfig_2_Models:
return MockConfig_2_Models.load_from_toml(Path(__file__).parent / "mock_config_2_models.toml")
@pytest.fixture
def mock_trainer_2_models(mock_config_2_models: MockConfig) -> MockTrainerWith2Models:
return MockTrainerWith2Models(config=mock_config_2_models)
def test_optimizer_parameters(mock_trainer_2_models: MockTrainerWith2Models) -> None:
assert len(mock_trainer_2_models.optimizer.param_groups) == 2
assert mock_trainer_2_models.optimizer.param_groups[0]["lr"] == 1e-5