mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-24 23:28:45 +00:00
115 lines
3.8 KiB
Python
115 lines
3.8 KiB
Python
from functools import cache
|
|
from pathlib import Path
|
|
from textwrap import dedent
|
|
|
|
import piq # type: ignore
|
|
import torch
|
|
import torch.nn as nn
|
|
from PIL import Image
|
|
from transformers import T5EncoderModel, T5Tokenizer # type: ignore
|
|
|
|
from refiners.conversion.models import dinov2
|
|
from refiners.fluxion.utils import image_to_tensor
|
|
from refiners.foundationals.dinov2 import DINOv2_small
|
|
|
|
|
|
@cache
|
|
def get_small_dinov2_model() -> DINOv2_small:
|
|
model = DINOv2_small()
|
|
model.load_from_safetensors(
|
|
dinov2.small.converted.local_path
|
|
if dinov2.small.converted.local_path.exists()
|
|
else dinov2.small.converted.hf_cache_path
|
|
)
|
|
return model
|
|
|
|
|
|
def compare_images(
|
|
img_1: Image.Image,
|
|
img_2: Image.Image,
|
|
) -> tuple[float, float, float]:
|
|
x1 = image_to_tensor(img_1)
|
|
x2 = image_to_tensor(img_2)
|
|
|
|
psnr = piq.psnr(x1, x2) # type: ignore
|
|
ssim = piq.ssim(x1, x2) # type: ignore
|
|
|
|
dinov2_model = get_small_dinov2_model()
|
|
dinov2 = torch.nn.functional.cosine_similarity(
|
|
dinov2_model(x1)[:, 0],
|
|
dinov2_model(x2)[:, 0],
|
|
)
|
|
|
|
return psnr.item(), ssim.item(), dinov2.item() # type: ignore
|
|
|
|
|
|
def ensure_similar_images(
|
|
img_1: Image.Image,
|
|
img_2: Image.Image,
|
|
min_psnr: int = 45,
|
|
min_ssim: float = 0.99,
|
|
min_dinov2: float = 0.99,
|
|
) -> None:
|
|
psnr, ssim, dinov2 = compare_images(img_1, img_2)
|
|
if (psnr < min_psnr) or (ssim < min_ssim) or (dinov2 < min_dinov2):
|
|
raise AssertionError(
|
|
dedent(f"""
|
|
Images are not similar enough!
|
|
- PSNR: {psnr:08.05f} (required at least {min_psnr:08.05f})
|
|
- SSIM: {ssim:08.06f} (required at least {min_ssim:08.06f})
|
|
- DINO: {dinov2:08.06f} (required at least {min_dinov2:08.06f})
|
|
""").strip()
|
|
)
|
|
|
|
|
|
class T5TextEmbedder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
pretrained_path: Path | str,
|
|
max_length: int | None = None,
|
|
local_files_only: bool = False,
|
|
) -> None:
|
|
super().__init__() # type: ignore[reportUnknownMemberType]
|
|
self.model: nn.Module = T5EncoderModel.from_pretrained( # type: ignore
|
|
pretrained_path,
|
|
local_files_only=local_files_only,
|
|
)
|
|
self.tokenizer: transformers.T5Tokenizer = T5Tokenizer.from_pretrained( # type: ignore
|
|
pretrained_path,
|
|
local_files_only=local_files_only,
|
|
)
|
|
self.max_length = max_length
|
|
|
|
def forward(
|
|
self,
|
|
caption: str,
|
|
text_input_ids: torch.Tensor | None = None,
|
|
attention_mask: torch.Tensor | None = None,
|
|
max_length: int | None = None,
|
|
) -> torch.Tensor:
|
|
if max_length is None:
|
|
max_length = self.max_length
|
|
|
|
if text_input_ids is None or attention_mask is None:
|
|
if max_length is not None:
|
|
text_inputs = self.tokenizer( # type: ignore
|
|
caption,
|
|
return_tensors="pt",
|
|
add_special_tokens=True,
|
|
max_length=max_length,
|
|
padding="max_length",
|
|
truncation=True,
|
|
)
|
|
else:
|
|
text_inputs = self.tokenizer(caption, return_tensors="pt", add_special_tokens=True) # type: ignore
|
|
_text_input_ids: torch.Tensor = text_inputs.input_ids.to(self.model.device) # type: ignore
|
|
_attention_mask: torch.Tensor = text_inputs.attention_mask.to(self.model.device) # type: ignore
|
|
else:
|
|
_text_input_ids: torch.Tensor = text_input_ids.to(self.model.device) # type: ignore
|
|
_attention_mask: torch.Tensor = attention_mask.to(self.model.device) # type: ignore
|
|
|
|
outputs = self.model(_text_input_ids, attention_mask=_attention_mask)
|
|
|
|
embeddings = outputs.last_hidden_state
|
|
return embeddings
|