mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-14 00:58:13 +00:00
228 lines
8.2 KiB
Python
228 lines
8.2 KiB
Python
# pyright: reportPrivateUsage=false
|
|
import argparse
|
|
from pathlib import Path
|
|
import torch
|
|
from torch import nn
|
|
from diffusers import ControlNetModel # type: ignore
|
|
from refiners.fluxion.utils import save_to_safetensors
|
|
from refiners.fluxion.model_converter import ModelConverter
|
|
from refiners.foundationals.latent_diffusion import (
|
|
SD1UNet,
|
|
SD1ControlnetAdapter,
|
|
DPMSolver,
|
|
)
|
|
|
|
|
|
class Args(argparse.Namespace):
|
|
source_path: str
|
|
output_path: str | None
|
|
|
|
|
|
@torch.no_grad()
|
|
def convert(args: Args) -> dict[str, torch.Tensor]:
|
|
controlnet_src: nn.Module = ControlNetModel.from_pretrained(pretrained_model_name_or_path=args.source_path) # type: ignore
|
|
unet = SD1UNet(in_channels=4)
|
|
adapter = SD1ControlnetAdapter(unet, name="mycn").inject()
|
|
controlnet = unet.Controlnet
|
|
|
|
condition = torch.randn(1, 3, 512, 512)
|
|
adapter.set_controlnet_condition(condition=condition)
|
|
|
|
clip_text_embedding = torch.rand(1, 77, 768)
|
|
unet.set_clip_text_embedding(clip_text_embedding=clip_text_embedding)
|
|
|
|
scheduler = DPMSolver(num_inference_steps=10)
|
|
timestep = scheduler.timesteps[0].unsqueeze(dim=0)
|
|
unet.set_timestep(timestep=timestep.unsqueeze(dim=0))
|
|
|
|
x = torch.randn(1, 4, 64, 64)
|
|
|
|
# We need the hack below because our implementation is not strictly equivalent
|
|
# to diffusers in order, since we compute the residuals inline instead of
|
|
# in a separate step.
|
|
|
|
converter = ModelConverter(
|
|
source_model=controlnet_src, target_model=controlnet, skip_output_check=True, verbose=False
|
|
)
|
|
|
|
source_order = converter._trace_module_execution_order(
|
|
module=controlnet_src, args=(x, timestep, clip_text_embedding, condition), keys_to_skip=[]
|
|
)
|
|
target_order = converter._trace_module_execution_order(module=controlnet, args=(x,), keys_to_skip=[])
|
|
|
|
broken_k = (nn.Conv2d, (torch.Size([320, 320, 1, 1]), torch.Size([320])))
|
|
|
|
expected_source_order = [
|
|
"down_blocks.0.attentions.0.proj_in",
|
|
"down_blocks.0.attentions.0.proj_out",
|
|
"down_blocks.0.attentions.1.proj_in",
|
|
"down_blocks.0.attentions.1.proj_out",
|
|
"controlnet_down_blocks.0",
|
|
"controlnet_down_blocks.1",
|
|
"controlnet_down_blocks.2",
|
|
"controlnet_down_blocks.3",
|
|
]
|
|
|
|
expected_target_order = [
|
|
"DownBlocks.Chain_1.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_2.CLIPLCrossAttention.Chain.Chain_1.Conv2d",
|
|
"DownBlocks.Chain_2.CLIPLCrossAttention.Chain.Chain_3.Conv2d",
|
|
"DownBlocks.Chain_2.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_3.CLIPLCrossAttention.Chain.Chain_1.Conv2d",
|
|
"DownBlocks.Chain_3.CLIPLCrossAttention.Chain.Chain_3.Conv2d",
|
|
"DownBlocks.Chain_3.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_4.Passthrough.Conv2d",
|
|
]
|
|
|
|
fixed_source_order = [
|
|
"controlnet_down_blocks.0",
|
|
"down_blocks.0.attentions.0.proj_in",
|
|
"down_blocks.0.attentions.0.proj_out",
|
|
"controlnet_down_blocks.1",
|
|
"down_blocks.0.attentions.1.proj_in",
|
|
"down_blocks.0.attentions.1.proj_out",
|
|
"controlnet_down_blocks.2",
|
|
"controlnet_down_blocks.3",
|
|
]
|
|
|
|
assert source_order[broken_k] == expected_source_order
|
|
assert target_order[broken_k] == expected_target_order
|
|
source_order[broken_k] = fixed_source_order
|
|
|
|
broken_k = (nn.Conv2d, (torch.Size([640, 640, 1, 1]), torch.Size([640])))
|
|
|
|
expected_source_order = [
|
|
"down_blocks.1.attentions.0.proj_in",
|
|
"down_blocks.1.attentions.0.proj_out",
|
|
"down_blocks.1.attentions.1.proj_in",
|
|
"down_blocks.1.attentions.1.proj_out",
|
|
"controlnet_down_blocks.4",
|
|
"controlnet_down_blocks.5",
|
|
"controlnet_down_blocks.6",
|
|
]
|
|
|
|
expected_target_order = [
|
|
"DownBlocks.Chain_5.CLIPLCrossAttention.Chain.Chain_1.Conv2d",
|
|
"DownBlocks.Chain_5.CLIPLCrossAttention.Chain.Chain_3.Conv2d",
|
|
"DownBlocks.Chain_5.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_6.CLIPLCrossAttention.Chain.Chain_1.Conv2d",
|
|
"DownBlocks.Chain_6.CLIPLCrossAttention.Chain.Chain_3.Conv2d",
|
|
"DownBlocks.Chain_6.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_7.Passthrough.Conv2d",
|
|
]
|
|
|
|
fixed_source_order = [
|
|
"down_blocks.1.attentions.0.proj_in",
|
|
"down_blocks.1.attentions.0.proj_out",
|
|
"controlnet_down_blocks.4",
|
|
"down_blocks.1.attentions.1.proj_in",
|
|
"down_blocks.1.attentions.1.proj_out",
|
|
"controlnet_down_blocks.5",
|
|
"controlnet_down_blocks.6",
|
|
]
|
|
|
|
assert source_order[broken_k] == expected_source_order
|
|
assert target_order[broken_k] == expected_target_order
|
|
source_order[broken_k] = fixed_source_order
|
|
|
|
broken_k = (nn.Conv2d, (torch.Size([1280, 1280, 1, 1]), torch.Size([1280])))
|
|
|
|
expected_source_order = [
|
|
"down_blocks.2.attentions.0.proj_in",
|
|
"down_blocks.2.attentions.0.proj_out",
|
|
"down_blocks.2.attentions.1.proj_in",
|
|
"down_blocks.2.attentions.1.proj_out",
|
|
"mid_block.attentions.0.proj_in",
|
|
"mid_block.attentions.0.proj_out",
|
|
"controlnet_down_blocks.7",
|
|
"controlnet_down_blocks.8",
|
|
"controlnet_down_blocks.9",
|
|
"controlnet_down_blocks.10",
|
|
"controlnet_down_blocks.11",
|
|
"controlnet_mid_block",
|
|
]
|
|
|
|
expected_target_order = [
|
|
"DownBlocks.Chain_8.CLIPLCrossAttention.Chain.Chain_1.Conv2d",
|
|
"DownBlocks.Chain_8.CLIPLCrossAttention.Chain.Chain_3.Conv2d",
|
|
"DownBlocks.Chain_8.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_9.CLIPLCrossAttention.Chain.Chain_1.Conv2d",
|
|
"DownBlocks.Chain_9.CLIPLCrossAttention.Chain.Chain_3.Conv2d",
|
|
"DownBlocks.Chain_9.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_10.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_11.Passthrough.Conv2d",
|
|
"DownBlocks.Chain_12.Passthrough.Conv2d",
|
|
"MiddleBlock.CLIPLCrossAttention.Chain.Chain_1.Conv2d",
|
|
"MiddleBlock.CLIPLCrossAttention.Chain.Chain_3.Conv2d",
|
|
"MiddleBlock.Passthrough.Conv2d",
|
|
]
|
|
|
|
fixed_source_order = [
|
|
"down_blocks.2.attentions.0.proj_in",
|
|
"down_blocks.2.attentions.0.proj_out",
|
|
"controlnet_down_blocks.7",
|
|
"down_blocks.2.attentions.1.proj_in",
|
|
"down_blocks.2.attentions.1.proj_out",
|
|
"controlnet_down_blocks.8",
|
|
"controlnet_down_blocks.9",
|
|
"controlnet_down_blocks.10",
|
|
"controlnet_down_blocks.11",
|
|
"mid_block.attentions.0.proj_in",
|
|
"mid_block.attentions.0.proj_out",
|
|
"controlnet_mid_block",
|
|
]
|
|
|
|
assert source_order[broken_k] == expected_source_order
|
|
assert target_order[broken_k] == expected_target_order
|
|
source_order[broken_k] = fixed_source_order
|
|
|
|
assert converter._assert_shapes_aligned(source_order=source_order, target_order=target_order), "Shapes not aligned"
|
|
|
|
mapping: dict[str, str] = {}
|
|
for model_type_shape in source_order:
|
|
source_keys = source_order[model_type_shape]
|
|
target_keys = target_order[model_type_shape]
|
|
mapping.update(zip(target_keys, source_keys))
|
|
|
|
state_dict = converter._convert_state_dict(
|
|
source_state_dict=controlnet_src.state_dict(),
|
|
target_state_dict=controlnet.state_dict(),
|
|
state_dict_mapping=mapping,
|
|
)
|
|
|
|
return {k: v.half() for k, v in state_dict.items()}
|
|
|
|
|
|
def main() -> None:
|
|
parser = argparse.ArgumentParser(description="Convert a diffusers ControlNet model to a Refiners ControlNet model")
|
|
parser.add_argument(
|
|
"--from",
|
|
type=str,
|
|
dest="source_path",
|
|
default="lllyasviel/sd-controlnet-depth",
|
|
help=(
|
|
"Can be a path to a .bin, a .safetensors file, or a model identifier from Hugging Face Hub. Defaults to"
|
|
" lllyasviel/sd-controlnet-depth"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--to",
|
|
type=str,
|
|
dest="output_path",
|
|
required=False,
|
|
default=None,
|
|
help=(
|
|
"Output path (.safetensors) for converted model. If not provided, the output path will be the same as the"
|
|
" source path."
|
|
),
|
|
)
|
|
args = parser.parse_args(namespace=Args())
|
|
if args.output_path is None:
|
|
args.output_path = f"{Path(args.source_path).stem}-controlnet.safetensors"
|
|
state_dict = convert(args=args)
|
|
save_to_safetensors(path=args.output_path, tensors=state_dict)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|