mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-24 07:08:45 +00:00
256 lines
8.1 KiB
Python
256 lines
8.1 KiB
Python
import gc
|
|
from pathlib import Path
|
|
from warnings import warn
|
|
|
|
import pytest
|
|
import torch
|
|
from PIL import Image
|
|
from tests.utils import ensure_similar_images
|
|
|
|
from refiners.fluxion.utils import load_from_safetensors, manual_seed, no_grad
|
|
from refiners.foundationals.latent_diffusion.lora import SDLoraManager
|
|
from refiners.foundationals.latent_diffusion.solvers import Euler, ModelPredictionType, SolverParams, TimestepSpacing
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.lcm_lora import add_lcm_lora
|
|
from refiners.foundationals.latent_diffusion.stable_diffusion_xl.model import StableDiffusion_XL
|
|
|
|
|
|
def _img_open(path: Path) -> Image.Image:
|
|
return Image.open(path) # type: ignore
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def ensure_gc():
|
|
# Avoid GPU OOMs
|
|
# See https://github.com/pytest-dev/pytest/discussions/8153#discussioncomment-214812
|
|
gc.collect()
|
|
|
|
|
|
@pytest.fixture
|
|
def sdxl_lda_fp16_fix_weights(test_weights_path: Path) -> Path:
|
|
r = test_weights_path / "sdxl-lda-fp16-fix.safetensors"
|
|
if not r.is_file():
|
|
warn(f"could not find weights at {r}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return r
|
|
|
|
|
|
@pytest.fixture
|
|
def sdxl_unet_weights(test_weights_path: Path) -> Path:
|
|
r = test_weights_path / "sdxl-unet.safetensors"
|
|
if not r.is_file():
|
|
warn(f"could not find weights at {r}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return r
|
|
|
|
|
|
@pytest.fixture
|
|
def sdxl_lightning_4step_unet_weights(test_weights_path: Path) -> Path:
|
|
r = test_weights_path / "sdxl_lightning_4step_unet.safetensors"
|
|
if not r.is_file():
|
|
warn(f"could not find weights at {r}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return r
|
|
|
|
|
|
@pytest.fixture
|
|
def sdxl_lightning_1step_unet_weights(test_weights_path: Path) -> Path:
|
|
r = test_weights_path / "sdxl_lightning_1step_unet_x0.safetensors"
|
|
if not r.is_file():
|
|
warn(f"could not find weights at {r}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return r
|
|
|
|
|
|
@pytest.fixture
|
|
def sdxl_text_encoder_weights(test_weights_path: Path) -> Path:
|
|
r = test_weights_path / "DoubleCLIPTextEncoder.safetensors"
|
|
if not r.is_file():
|
|
warn(f"could not find weights at {r}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return r
|
|
|
|
|
|
@pytest.fixture
|
|
def sdxl_lightning_4step_lora_weights(test_weights_path: Path) -> Path:
|
|
r = test_weights_path / "sdxl_lightning_4step_lora.safetensors"
|
|
if not r.is_file():
|
|
warn(f"could not find weights at {r}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return r
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def ref_path(test_e2e_path: Path) -> Path:
|
|
return test_e2e_path / "test_lightning_ref"
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_lightning_base_4step(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_lightning_base_4step.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_lightning_base_1step(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_lightning_base_1step.png").convert("RGB")
|
|
|
|
|
|
@pytest.fixture
|
|
def expected_lightning_lora_4step(ref_path: Path) -> Image.Image:
|
|
return _img_open(ref_path / "expected_lightning_lora_4step.png").convert("RGB")
|
|
|
|
|
|
@no_grad()
|
|
def test_lightning_base_4step(
|
|
test_device: torch.device,
|
|
sdxl_lda_fp16_fix_weights: Path,
|
|
sdxl_lightning_4step_unet_weights: Path,
|
|
sdxl_text_encoder_weights: Path,
|
|
expected_lightning_base_4step: Image.Image,
|
|
) -> None:
|
|
if test_device.type == "cpu":
|
|
warn(message="not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
unet_weights = sdxl_lightning_4step_unet_weights
|
|
expected_image = expected_lightning_base_4step
|
|
|
|
solver = Euler(
|
|
num_inference_steps=4,
|
|
params=SolverParams(
|
|
timesteps_spacing=TimestepSpacing.TRAILING,
|
|
model_prediction_type=ModelPredictionType.NOISE,
|
|
),
|
|
)
|
|
|
|
sdxl = StableDiffusion_XL(device=test_device, dtype=torch.float16, solver=solver)
|
|
sdxl.classifier_free_guidance = False
|
|
|
|
sdxl.clip_text_encoder.load_from_safetensors(sdxl_text_encoder_weights)
|
|
sdxl.lda.load_from_safetensors(sdxl_lda_fp16_fix_weights)
|
|
sdxl.unet.load_from_safetensors(unet_weights)
|
|
|
|
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
|
|
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(prompt)
|
|
time_ids = sdxl.default_time_ids
|
|
|
|
manual_seed(0)
|
|
x = sdxl.init_latents((1024, 1024)).to(sdxl.device, sdxl.dtype)
|
|
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
)
|
|
predicted_image = sdxl.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image)
|
|
|
|
|
|
@no_grad()
|
|
def test_lightning_base_1step(
|
|
test_device: torch.device,
|
|
sdxl_lda_fp16_fix_weights: Path,
|
|
sdxl_lightning_1step_unet_weights: Path,
|
|
sdxl_text_encoder_weights: Path,
|
|
expected_lightning_base_1step: Image.Image,
|
|
) -> None:
|
|
if test_device.type == "cpu":
|
|
warn(message="not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
unet_weights = sdxl_lightning_1step_unet_weights
|
|
expected_image = expected_lightning_base_1step
|
|
|
|
solver = Euler(
|
|
num_inference_steps=1,
|
|
params=SolverParams(
|
|
timesteps_spacing=TimestepSpacing.TRAILING,
|
|
model_prediction_type=ModelPredictionType.SAMPLE, # 1 step special case
|
|
),
|
|
)
|
|
|
|
sdxl = StableDiffusion_XL(device=test_device, dtype=torch.float16, solver=solver)
|
|
sdxl.classifier_free_guidance = False
|
|
|
|
sdxl.clip_text_encoder.load_from_safetensors(sdxl_text_encoder_weights)
|
|
sdxl.lda.load_from_safetensors(sdxl_lda_fp16_fix_weights)
|
|
sdxl.unet.load_from_safetensors(unet_weights)
|
|
|
|
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
|
|
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(prompt)
|
|
time_ids = sdxl.default_time_ids
|
|
|
|
manual_seed(0)
|
|
x = sdxl.init_latents((1024, 1024)).to(sdxl.device, sdxl.dtype)
|
|
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
)
|
|
predicted_image = sdxl.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image)
|
|
|
|
|
|
@no_grad()
|
|
def test_lightning_lora_4step(
|
|
test_device: torch.device,
|
|
sdxl_lda_fp16_fix_weights: Path,
|
|
sdxl_unet_weights: Path,
|
|
sdxl_text_encoder_weights: Path,
|
|
sdxl_lightning_4step_lora_weights: Path,
|
|
expected_lightning_lora_4step: Image.Image,
|
|
) -> None:
|
|
if test_device.type == "cpu":
|
|
warn(message="not running on CPU, skipping")
|
|
pytest.skip()
|
|
|
|
expected_image = expected_lightning_lora_4step
|
|
|
|
solver = Euler(
|
|
num_inference_steps=4,
|
|
params=SolverParams(
|
|
timesteps_spacing=TimestepSpacing.TRAILING,
|
|
model_prediction_type=ModelPredictionType.NOISE,
|
|
),
|
|
)
|
|
|
|
sdxl = StableDiffusion_XL(device=test_device, dtype=torch.float16, solver=solver)
|
|
sdxl.classifier_free_guidance = False
|
|
|
|
sdxl.clip_text_encoder.load_from_safetensors(sdxl_text_encoder_weights)
|
|
sdxl.lda.load_from_safetensors(sdxl_lda_fp16_fix_weights)
|
|
sdxl.unet.load_from_safetensors(sdxl_unet_weights)
|
|
|
|
manager = SDLoraManager(sdxl)
|
|
add_lcm_lora(manager, load_from_safetensors(sdxl_lightning_4step_lora_weights), name="lightning")
|
|
|
|
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
|
|
|
|
clip_text_embedding, pooled_text_embedding = sdxl.compute_clip_text_embedding(prompt)
|
|
time_ids = sdxl.default_time_ids
|
|
|
|
manual_seed(0)
|
|
x = sdxl.init_latents((1024, 1024)).to(sdxl.device, sdxl.dtype)
|
|
|
|
for step in sdxl.steps:
|
|
x = sdxl(
|
|
x,
|
|
step=step,
|
|
clip_text_embedding=clip_text_embedding,
|
|
pooled_text_embedding=pooled_text_embedding,
|
|
time_ids=time_ids,
|
|
)
|
|
predicted_image = sdxl.lda.latents_to_image(x)
|
|
|
|
ensure_similar_images(predicted_image, expected_image)
|