mirror of
https://github.com/finegrain-ai/refiners.git
synced 2024-11-14 09:08:14 +00:00
148 lines
4.9 KiB
Python
148 lines
4.9 KiB
Python
from math import isclose
|
|
from pathlib import Path
|
|
from warnings import warn
|
|
|
|
import pytest
|
|
import torch
|
|
from transformers import AutoModel # type: ignore
|
|
from transformers.models.dinov2.modeling_dinov2 import Dinov2Model # type: ignore
|
|
|
|
from refiners.fluxion.utils import load_from_safetensors, manual_seed, no_grad
|
|
from refiners.foundationals.dinov2 import (
|
|
DINOv2_base,
|
|
DINOv2_base_reg,
|
|
DINOv2_large,
|
|
DINOv2_large_reg,
|
|
DINOv2_small,
|
|
DINOv2_small_reg,
|
|
)
|
|
from refiners.foundationals.dinov2.vit import ViT
|
|
|
|
FLAVORS = [
|
|
"dinov2_vits14",
|
|
"dinov2_vitb14",
|
|
"dinov2_vitl14",
|
|
"dinov2_vits14_reg4",
|
|
"dinov2_vitb14_reg4",
|
|
"dinov2_vitl14_reg4",
|
|
]
|
|
|
|
|
|
@pytest.fixture(scope="module", params=FLAVORS)
|
|
def flavor(request: pytest.FixtureRequest) -> str:
|
|
return request.param
|
|
|
|
|
|
# Temporary: see comments in `test_encoder_only`
|
|
@pytest.fixture(scope="module")
|
|
def seed_expected_norm(flavor: str) -> tuple[int, float]:
|
|
match flavor:
|
|
case "dinov2_vits14":
|
|
return (42, 1977.9213867)
|
|
case "dinov2_vitb14":
|
|
return (42, 1902.6384277)
|
|
case "dinov2_vitl14":
|
|
return (42, 1763.9187011)
|
|
case "dinov2_vits14_reg4":
|
|
return (42, 989.2380981)
|
|
case "dinov2_vitb14_reg4":
|
|
return (42, 974.4362182)
|
|
case "dinov2_vitl14_reg4":
|
|
return (42, 924.8797607)
|
|
case _:
|
|
raise ValueError(f"Unexpected DINOv2 flavor: {flavor}")
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def our_backbone(test_weights_path: Path, flavor: str, test_device: torch.device) -> ViT:
|
|
weights = test_weights_path / f"{flavor}_pretrain.safetensors"
|
|
if not weights.is_file():
|
|
warn(f"could not find weights at {weights}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
match flavor:
|
|
case "dinov2_vits14":
|
|
backbone = DINOv2_small(device=test_device)
|
|
case "dinov2_vitb14":
|
|
backbone = DINOv2_base(device=test_device)
|
|
case "dinov2_vitl14":
|
|
backbone = DINOv2_large(device=test_device)
|
|
case "dinov2_vits14_reg4":
|
|
backbone = DINOv2_small_reg(device=test_device)
|
|
case "dinov2_vitb14_reg4":
|
|
backbone = DINOv2_base_reg(device=test_device)
|
|
case "dinov2_vitl14_reg4":
|
|
backbone = DINOv2_large_reg(device=test_device)
|
|
case _:
|
|
raise ValueError(f"Unexpected DINOv2 flavor: {flavor}")
|
|
tensors = load_from_safetensors(weights)
|
|
backbone.load_state_dict(tensors)
|
|
return backbone
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def dinov2_weights_path(test_weights_path: Path, flavor: str):
|
|
# TODO: At the time of writing, those are not yet supported in transformers
|
|
# (https://github.com/huggingface/transformers/issues/27379). Alternatively, it is also possible to use
|
|
# facebookresearch/dinov2 directly (https://github.com/finegrain-ai/refiners/pull/132).
|
|
if flavor.endswith("_reg4"):
|
|
warn(f"DINOv2 with registers are not yet supported in Hugging Face, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
match flavor:
|
|
case "dinov2_vits14":
|
|
name = "dinov2-small"
|
|
case "dinov2_vitb14":
|
|
name = "dinov2-base"
|
|
case "dinov2_vitl14":
|
|
name = "dinov2-large"
|
|
case _:
|
|
raise ValueError(f"Unexpected DINOv2 flavor: {flavor}")
|
|
r = test_weights_path / "facebook" / name
|
|
if not r.is_dir():
|
|
warn(f"could not find DINOv2 weights at {r}, skipping")
|
|
pytest.skip(allow_module_level=True)
|
|
return r
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def ref_backbone(dinov2_weights_path: Path, test_device: torch.device) -> Dinov2Model:
|
|
backbone = AutoModel.from_pretrained(dinov2_weights_path) # type: ignore
|
|
assert isinstance(backbone, Dinov2Model)
|
|
return backbone.to(test_device) # type: ignore
|
|
|
|
|
|
def test_encoder(
|
|
ref_backbone: Dinov2Model,
|
|
our_backbone: ViT,
|
|
test_device: torch.device,
|
|
):
|
|
manual_seed(42)
|
|
|
|
# Position encoding interpolation [1] at runtime is not supported yet. So stick to the default image resolution
|
|
# e.g. using (224, 224) pixels as input would give a runtime error (sequence size mismatch)
|
|
# [1]: https://github.com/facebookresearch/dinov2/blob/2302b6b/dinov2/models/vision_transformer.py#L179
|
|
assert our_backbone.image_size == 518
|
|
|
|
x = torch.randn(1, 3, 518, 518).to(test_device)
|
|
|
|
with no_grad():
|
|
ref_features = ref_backbone(x).last_hidden_state
|
|
our_features = our_backbone(x)
|
|
|
|
assert (our_features - ref_features).abs().max() < 1e-3
|
|
|
|
|
|
# Mainly for DINOv2 + registers coverage (this test can be removed once `test_encoder` supports all flavors)
|
|
def test_encoder_only(
|
|
our_backbone: ViT,
|
|
seed_expected_norm: tuple[int, float],
|
|
test_device: torch.device,
|
|
):
|
|
seed, expected_norm = seed_expected_norm
|
|
manual_seed(seed)
|
|
|
|
x = torch.randn(1, 3, 518, 518).to(test_device)
|
|
|
|
our_features = our_backbone(x)
|
|
|
|
assert isclose(our_features.norm().item(), expected_norm, rel_tol=1e-04)
|